Segarra Carlos, Climente Juan I, Polovitsyn Anatolii, Rajadell Fernando, Moreels Iwan, Planelles Josep
Departament de Química Física i Analítica, Universitat Jaume I , E-12080 Castelló de la Plana, Spain.
Istituto Italiano di Tecnologia , Via Morego 30, IT-16163 Genova, Italy.
J Phys Chem Lett. 2016 Jun 16;7(12):2182-8. doi: 10.1021/acs.jpclett.6b00622. Epub 2016 May 27.
Using multiband k·p calculations, we show that strain-engineered piezoelectricity is a powerful tool to modulate the electron-hole spatial separation in a wide class of wurtzite CdSe/CdS nanocrystals. The inherent anisotropy of the hexagonal crystal structure leads to anisotropic strain and, consequently, to a pronounced piezoelectric field along the c axis, which can be amplified or quenched through a proper design of the core-shell structure. The use of large cores and thick shells promotes a gradual departure from quantum confined nanocrystals to a regime dominated by piezoelectric confinement. This allows excitons to evolve from the usual type-I and quasi-type-II behavior to a type-II behavior in dot-in-dots, dot-in-rods, rod-in-rods, and dot-in-plates. Piezoelectric fields explain experimental observations for giant-shell nanocrystals, whose time-resolved photoluminescence reveals long exciton lifetimes for large cores, contrary to the expectations of standard quantum confinement models. They also explain the large differences in exciton lifetimes reported for different classes of CdSe/CdS nanocrystals.
通过多波段k·p计算,我们表明应变工程压电性是一种强大的工具,可用于调制一大类纤锌矿CdSe/CdS纳米晶体中的电子-空穴空间分离。六方晶体结构固有的各向异性导致各向异性应变,进而沿c轴产生明显的压电场,通过对核壳结构进行适当设计,该压电场可以增强或淬灭。使用大核和厚壳促使从量子限制纳米晶体逐渐过渡到以压电限制为主导的状态。这使得激子从通常的I型和准II型行为演变为点中点点、点中棒、棒中棒和点中板中的II型行为。压电场解释了巨壳纳米晶体的实验观察结果,其时间分辨光致发光显示大核具有长激子寿命,这与标准量子限制模型的预期相反。它们还解释了不同类别的CdSe/CdS纳米晶体报道的激子寿命的巨大差异。