Suppr超能文献

单轴应变工程:CdSe/CdS核壳纳米棒中的核心位置控制及其光学响应

Uniaxial Strain Engineering Core Position Control in CdSe/CdS Core/Shell Nanorods and Their Optical Response.

作者信息

Kim Dahin, Shcherbakov-Wu Wenbi, Ha Seung Kyun, Lee Woo Seok, Tisdale William A

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

出版信息

ACS Nano. 2022 Sep 27;16(9):14713-14722. doi: 10.1021/acsnano.2c05427. Epub 2022 Aug 31.

Abstract

Anisotropic strain engineering has emerged as a powerful strategy for enhancing the optoelectronic performance of semiconductor nanocrystals. Here, we show that CdSe/CdS dot-in-rod structures offer a platform for fine-tuning the optical response of CdSe quantum dots through anisotropic strain. By controlling the spatial position of the CdSe core within a growing CdS nanorod shell, varying degrees of uniaxial strain can be introduced. Placing CdSe cores at the end of the CdS nanorod induces strong asymmetric compression along the axis of the wurtzite CdSe core, dramatically altering its absorption and emission characteristics, whereas CdSe cores located near the middle of the nanorod experience a comparatively weak uniaxial strain field. The change in absorption and emission spectra and dynamics for highly strained end-position CdSe/CdS nanorods is explained by (1) relative shifting of the valence band light hole and heavy hole levels and (2) introduction of a strong piezoelectric potential, which spatially separates the electron and hole wave functions. The ability to tune the degree of uniaxial strain through core position control in a nanorod structure creates opportunities for precisely modulating the electronic properties of CdSe nanocrystals while simultaneously taking advantage of dielectric and optical anisotropies intrinsic to 1D nanostructures.

摘要

各向异性应变工程已成为提高半导体纳米晶体光电性能的有力策略。在此,我们表明,CdSe/CdS 棒中 dot 结构为通过各向异性应变微调 CdSe 量子点的光学响应提供了一个平台。通过控制 CdSe 核在生长的 CdS 纳米棒壳层内的空间位置,可以引入不同程度的单轴应变。将 CdSe 核置于 CdS 纳米棒的末端会沿纤锌矿 CdSe 核的轴诱导强烈的不对称压缩,从而显著改变其吸收和发射特性,而位于纳米棒中间附近的 CdSe 核经历的单轴应变场相对较弱。对于高应变末端位置的 CdSe/CdS 纳米棒,吸收和发射光谱及动力学的变化可由以下两点解释:(1) 价带轻空穴和重空穴能级的相对移动;(2) 强压电势的引入,这在空间上分离了电子和空穴波函数。通过在纳米棒结构中控制核位置来调节单轴应变程度的能力,为精确调制 CdSe 纳米晶体的电子特性创造了机会,同时还能利用一维纳米结构固有的介电和光学各向异性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验