Suppr超能文献

对全数字切片中的图像放大具有鲁棒性的浸润性导管乳腺癌检测器。

Invasive ductal breast carcinoma detector that is robust to image magnification in whole digital slides.

作者信息

Balazsi Matthew, Blanco Paula, Zoroquiain Pablo, Levine Martin D, Burnier Miguel N

机构信息

McGill University, Centre for Intelligent Machines, Electrical and Computer Engineering, 3480 University Street, City, Montreal, Quebec H3A 2A7, Canada; McGill University, Department of Pathology, Henry C. Witelson Laboratory, 1001 Boulevard Decarie, Block E, Montreal, Quebec H4A 3J1, Canada.

McGill University , Department of Pathology, Henry C. Witelson Laboratory, 1001 Boulevard Decarie, Block E, Montreal, Quebec H4A 3J1, Canada.

出版信息

J Med Imaging (Bellingham). 2016 Apr;3(2):027501. doi: 10.1117/1.JMI.3.2.027501. Epub 2016 May 18.

Abstract

Invasive ductal breast carcinomas (IDBCs) are the most frequent and aggressive subtypes of breast cancer, affecting a large number of Canadian women every year. Part of the diagnostic process includes grading the cancerous tissue at the microscopic level according to the Nottingham modification of the Scarff-Bloom-Richardson system. Although reliable, there exists a growing interest in automating the grading process, which will provide consistent care for all patients. This paper presents a solution for automatically detecting regions expressing IDBC in images of microscopic tissue, or whole digital slides. This represents the first stage in a larger solution designed to automatically grade IDBC. The detector first tessellated whole digital slides, and image features were extracted, such as color information, local binary patterns, and histograms of oriented gradients. These were presented to a random forest classifier, which was trained and tested using a database of 66 cases diagnosed with IDBC. When properly tuned, the detector balanced accuracy, F1 score, and Dice's similarity coefficient were 88.7%, 79.5%, and 0.69, respectively. Overall, the results seemed strong enough to integrate our detector into a larger solution equipped with components that analyze the cancerous tissue at higher magnification, automatically producing the histopathological grade.

摘要

浸润性导管癌(IDBC)是乳腺癌中最常见且侵袭性最强的亚型,每年影响大量加拿大女性。诊断过程的一部分包括根据斯卡夫-布鲁姆-理查森系统的诺丁汉改良版在显微镜下对癌组织进行分级。尽管可靠,但人们对自动化分级过程的兴趣与日俱增,这将为所有患者提供一致的护理。本文提出了一种在微观组织图像或全数字切片中自动检测表达IDBC区域的解决方案。这是旨在自动对IDBC进行分级的更大解决方案的第一阶段。该检测器首先对全数字切片进行网格化,并提取图像特征,如颜色信息、局部二值模式和方向梯度直方图。这些特征被输入到一个随机森林分类器中,该分类器使用一个包含66例经诊断为IDBC的病例数据库进行训练和测试。经过适当调整后,检测器的平衡准确率、F1分数和骰子相似系数分别为88.7%、79.5%和0.69。总体而言,结果似乎足够强大,可以将我们的检测器集成到一个更大的解决方案中,该解决方案配备了在更高放大倍数下分析癌组织的组件,从而自动生成组织病理学分级。

相似文献

1
Invasive ductal breast carcinoma detector that is robust to image magnification in whole digital slides.
J Med Imaging (Bellingham). 2016 Apr;3(2):027501. doi: 10.1117/1.JMI.3.2.027501. Epub 2016 May 18.
5
Machine learning approaches to analyze histological images of tissues from radical prostatectomies.
Comput Med Imaging Graph. 2015 Dec;46 Pt 2(Pt 2):197-208. doi: 10.1016/j.compmedimag.2015.08.002. Epub 2015 Aug 20.
6
A machine learning model for detecting invasive ductal carcinoma with Google Cloud AutoML Vision.
Comput Biol Med. 2020 Jul;122:103861. doi: 10.1016/j.compbiomed.2020.103861. Epub 2020 Jun 13.
7
Mitosis Detection for Invasive Breast Cancer Grading in Histopathological Images.
IEEE Trans Image Process. 2015 Nov;24(11):4041-54. doi: 10.1109/TIP.2015.2460455. Epub 2015 Jul 23.
8
HER2/neu amplification in breast cancer: stratification by tumor type and grade.
Am J Clin Pathol. 2002 Jun;117(6):916-21. doi: 10.1309/4NTU-N6K4-F8JF-EWRX.

引用本文的文献

1
Unsupervised Learning Based on Multiple Descriptors for WSIs Diagnosis.
Diagnostics (Basel). 2022 Jun 16;12(6):1480. doi: 10.3390/diagnostics12061480.
2
Fast whole-slide cartography in colon cancer histology using superpixels and CNN classification.
J Med Imaging (Bellingham). 2022 Mar;9(2):027501. doi: 10.1117/1.JMI.9.2.027501. Epub 2022 Mar 14.
3
A Review of Computer-Aided Expert Systems for Breast Cancer Diagnosis.
Cancers (Basel). 2021 Jun 2;13(11):2764. doi: 10.3390/cancers13112764.
5
Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks.
Pattern Recognit. 2018 Dec;84:345-356. doi: 10.1016/j.patcog.2018.07.022. Epub 2018 Jul 20.
6
Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images.
J Med Imaging (Bellingham). 2017 Oct;4(4):044504. doi: 10.1117/1.JMI.4.4.044504. Epub 2017 Dec 14.

本文引用的文献

1
2
Mitosis detection in breast cancer histological images An ICPR 2012 contest.
J Pathol Inform. 2013 May 30;4:8. doi: 10.4103/2153-3539.112693. Print 2013.
3
Automated colorectal cancer diagnosis for whole-slice histopathology.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):550-7. doi: 10.1007/978-3-642-33454-2_68.
4
SLIC superpixels compared to state-of-the-art superpixel methods.
IEEE Trans Pattern Anal Mach Intell. 2012 Nov;34(11):2274-82. doi: 10.1109/TPAMI.2012.120.
5
Systematic analysis of breast cancer morphology uncovers stromal features associated with survival.
Sci Transl Med. 2011 Nov 9;3(108):108ra113. doi: 10.1126/scitranslmed.3002564.
6
The changing incidence of in situ and invasive ductal and lobular breast carcinomas: United States, 1999-2004.
Cancer Epidemiol Biomarkers Prev. 2009 Jun;18(6):1763-9. doi: 10.1158/1055-9965.EPI-08-1082. Epub 2009 May 19.
8
Prognostic significance of Nottingham histologic grade in invasive breast carcinoma.
J Clin Oncol. 2008 Jul 1;26(19):3153-8. doi: 10.1200/JCO.2007.15.5986. Epub 2008 May 19.
9
A study of efficiency and accuracy in the transformation from RGB to CIELAB color space.
IEEE Trans Image Process. 1997;6(7):1046-8. doi: 10.1109/83.597279.
10
Fuzzy color histogram and its use in color image retrieval.
IEEE Trans Image Process. 2002;11(8):944-52. doi: 10.1109/TIP.2002.801585.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验