Suppr超能文献

使用深度卷积网络对全切片乳腺组织病理学图像中的癌症进行检测和分类。

Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks.

作者信息

Gecer Baris, Aksoy Selim, Mercan Ezgi, Shapiro Linda G, Weaver Donald L, Elmore Joann G

机构信息

Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey.

Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Pattern Recognit. 2018 Dec;84:345-356. doi: 10.1016/j.patcog.2018.07.022. Epub 2018 Jul 20.

Abstract

Generalizability of algorithms for binary cancer vs. no cancer classification is unknown for clinically more significant multi-class scenarios where intermediate categories have different risk factors and treatment strategies. We present a system that classifies whole slide images (WSI) of breast biopsies into five diagnostic categories. First, a saliency detector that uses a pipeline of four fully convolutional networks, trained with samples from records of pathologists' screenings, performs multi-scale localization of diagnostically relevant regions of interest in WSI. Then, a convolutional network, trained from consensus-derived reference samples, classifies image patches as non-proliferative or proliferative changes, atypical ductal hyperplasia, ductal carcinoma in situ, and invasive carcinoma. Finally, the saliency and classification maps are fused for pixel-wise labeling and slide-level categorization. Experiments using 240 WSI showed that both saliency detector and classifier networks performed better than competing algorithms, and the five-class slide-level accuracy of 55% was not statistically different from the predictions of 45 pathologists. We also present example visualizations of the learned representations for breast cancer diagnosis.

摘要

对于临床上更具意义的多类别情况,即中间类别具有不同风险因素和治疗策略的情况,二元癌症与非癌症分类算法的可推广性尚不清楚。我们提出了一种将乳腺活检的全切片图像(WSI)分类为五个诊断类别的系统。首先,一个显著性检测器使用由四个全卷积网络组成的管道,通过病理学家筛查记录中的样本进行训练,对WSI中诊断相关的感兴趣区域进行多尺度定位。然后,一个从共识衍生的参考样本训练的卷积网络,将图像块分类为非增殖性或增殖性变化、非典型导管增生、导管原位癌和浸润性癌。最后,将显著性和分类图融合以进行逐像素标记和玻片级分类。使用240张WSI进行的实验表明,显著性检测器和分类器网络的表现均优于竞争算法,55%的五类玻片级准确率与45位病理学家的预测在统计学上没有差异。我们还展示了用于乳腺癌诊断的学习表示的示例可视化。

相似文献

引用本文的文献

4
Artificial Intelligence in Histologic Diagnosis of Ductal Carcinoma In Situ.人工智能在导管原位癌组织学诊断中的应用
Mayo Clin Proc Digit Health. 2023 Jun 25;1(3):267-275. doi: 10.1016/j.mcpdig.2023.05.008. eCollection 2023 Sep.

本文引用的文献

7
Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification.用于全切片组织图像分类的基于补丁的卷积神经网络
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016 Jun-Jul;2016:2424-2433. doi: 10.1109/CVPR.2016.266.
10
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验