Suppr超能文献

基于全切片组织学图像的神经母细胞瘤计算机辅助评估:神经母细胞分化程度分类

Computer-aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of neuroblastic differentiation.

作者信息

Kong J, Sertel O, Shimada H, Boyer K L, Saltz J H, Gurcan M N

机构信息

Department of Electrical and Computer Engineering, The Ohio State University, 2015 Neil Avenue, Columbus, OH 43210, USA.

Department of Biomedical Informatics, The Ohio State University, 3190 Graves Hall, Columbus, OH 43210, USA.

出版信息

Pattern Recognit. 2009 Jun;42(6):1080-1092. doi: 10.1016/j.patcog.2008.10.035.

Abstract

Neuroblastoma (NB) is one of the most frequently occurring cancerous tumors in children. The current grading evaluations for patients with this disease require pathologists to identify certain morphological characteristics with microscopic examinations of tumor tissues. Thanks to the advent of modern digital scanners, it is now feasible to scan cross-section tissue specimens and acquire whole-slide digital images. As a result, computerized analysis of these images can generate key quantifiable parameters and assist pathologists with grading evaluations. In this study, image analysis techniques are applied to histological images of haematoxylin and eosin (H&E) stained slides for identifying image regions associated with different pathological components. Texture features derived from segmented components of tissues are extracted and processed by an automated classifier group trained with sample images with different grades of neuroblastic differentiation in a multi-resolution framework. The trained classification system is tested on 33 whole-slide tumor images. The resulting whole-slide classification accuracy produced by the computerized system is 87.88%. Therefore, the developed system is a promising tool to facilitate grading whole-slide images of NB biopsies with high throughput.

摘要

神经母细胞瘤(NB)是儿童中最常见的癌性肿瘤之一。目前针对该疾病患者的分级评估需要病理学家通过对肿瘤组织进行显微镜检查来识别某些形态学特征。得益于现代数字扫描仪的出现,现在扫描横截面组织标本并获取全切片数字图像成为可能。因此,对这些图像进行计算机分析可以生成关键的可量化参数,并协助病理学家进行分级评估。在本研究中,图像分析技术被应用于苏木精和伊红(H&E)染色玻片的组织学图像,以识别与不同病理成分相关的图像区域。从组织的分割成分中提取纹理特征,并在多分辨率框架中由使用具有不同神经母细胞分化等级的样本图像训练的自动分类器组进行处理。训练好的分类系统在33张全切片肿瘤图像上进行测试。计算机系统产生的全切片分类准确率为87.88%。因此,所开发的系统是一种很有前景的工具,可用于高通量地对NB活检的全切片图像进行分级。

相似文献

8
Machine learning approaches to analyze histological images of tissues from radical prostatectomies.用于分析前列腺癌根治术组织学图像的机器学习方法。
Comput Med Imaging Graph. 2015 Dec;46 Pt 2(Pt 2):197-208. doi: 10.1016/j.compmedimag.2015.08.002. Epub 2015 Aug 20.

引用本文的文献

本文引用的文献

10
Neuroblastoma.神经母细胞瘤
Eur J Cancer. 1997 Aug;33(9):1430-7; discussion 1437-8. doi: 10.1016/s0959-8049(97)00308-0.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验