Davis M D, Kaufman S
Laboratory of Neurochemistry, National Institute of Mental Health, Bethesda, Maryland 20892.
J Biol Chem. 1989 May 25;264(15):8585-96.
In the presence of phenylalanine and molecular oxygen, activated phenylalanine hydroxylase catalyzes the oxidation of tetrahydrobiopterin. The oxidation of this tetrahydropterin cofactor also proceeds if the substrate, phenylalanine, is replaced by its product, tyrosine, in the initial reaction mixture. These two reactions have been defined as coupled and uncoupled, respectively, because in the former reaction 1 mol of phenylalanine is hydroxylated for every mole of tetrahydrobiopterin oxidized, whereas in the latter reaction there is no net hydroxylation of tyrosine during the oxidation of the tetrahydropterin. During the course of the coupled oxidation of tetrahydrobiopterin, a pterin 4a-carbinolamine intermediate can be detected by ultraviolet spectroscopy (Kaufman, S. (1976) in Iron and Copper Proteins (Yasunobu, K. T., Mower, H. F., and Hayaishi, O., eds) pp. 91-102, Plenum Publishing Corp., New York). Dix and Benkovic (Dix, T. A., and Benkovic, S. J. (1985) Biochemistry 24, 5839-5846) have postulated that the formation of this intermediate only occurs when the oxidation of the tetrahydropteridine is tightly coupled to the concomitant hydroxylation of the aromatic amino acid. However, during the tyrosine-dependent uncoupled oxidation of tetrahydrobiopterin by phenylalanine hydroxylase, we have detected the formation of a spectral intermediate with ultraviolet absorbance that is essentially identical to that of the carbinolamine. Furthermore, this absorbance can be eliminated by the addition of 4a-carbinolamine dehydratase, an enzyme which catalyzes the dehydration of the 4a-carbinolamine. Quantitation of this intermediate suggests that there are two pathways for the tyrosine-dependent uncoupled oxidation of tetrahydrobiopterin by phenylalanine hydroxylase because only about 0.3 mol of the intermediate is formed per mol of the cofactor oxidized.
在苯丙氨酸和分子氧存在的情况下,活化的苯丙氨酸羟化酶催化四氢生物蝶呤的氧化。如果在初始反应混合物中,底物苯丙氨酸被其产物酪氨酸取代,这种四氢蝶呤辅因子的氧化也会进行。这两个反应分别被定义为偶联反应和解偶联反应,因为在前一个反应中,每氧化1摩尔四氢生物蝶呤,就有1摩尔苯丙氨酸被羟化,而在后一个反应中,在四氢蝶呤氧化过程中酪氨酸没有净羟化。在四氢生物蝶呤的偶联氧化过程中,可以通过紫外光谱检测到一种蝶呤4a - 甲醇胺中间体(考夫曼,S.(1976年),载于《铁和铜蛋白》(安信部,K. T.、莫厄尔,H. F.和林石,O.编),第91 - 102页,普伦纽姆出版公司,纽约)。迪克斯和本科维奇(迪克斯,T. A.和本科维奇,S. J.(1985年),《生物化学》24,5839 - 5846)推测,只有当四氢蝶啶的氧化与芳香族氨基酸的伴随羟化紧密偶联时,这种中间体才会形成。然而,在苯丙氨酸羟化酶催化的酪氨酸依赖性四氢生物蝶呤解偶联氧化过程中,我们检测到了一种具有紫外吸收的光谱中间体的形成,其与甲醇胺的紫外吸收基本相同。此外,通过添加一种催化4a - 甲醇胺脱水的酶——4a - 甲醇胺脱水酶,可以消除这种吸收。对这种中间体的定量分析表明,苯丙氨酸羟化酶催化的酪氨酸依赖性四氢生物蝶呤解偶联氧化存在两条途径,因为每氧化1摩尔辅因子,仅形成约0.3摩尔的中间体。