Suppr超能文献

紫色杆菌苯丙氨酸羟化酶的非依赖金属羟基化机制。

Mechanism of metal-independent hydroxylation by Chromobacterium violaceum phenylalanine hydroxylase.

作者信息

Carr R T, Balasubramanian S, Hawkins P C, Benkovic S J

机构信息

Department of Chemistry, Pennsylvania State University, University Park 16802, USA.

出版信息

Biochemistry. 1995 Jun 6;34(22):7525-32. doi: 10.1021/bi00022a028.

Abstract

Phenylalanine hydroxylase converts phenylalanine to tyrosine utilizing a tetrahydrobiopterin cofactor. Several key mechanistic questions have yet to be resolved, specifically the identity of the hydroxylating species and the role of the non-heme iron which is present in all of the mammalian PAHs. Recently, we have demonstrated that a bacterial PAH from Chromobacterium violaceum does not require any redox active metal for activity [Carr, R. T., & Benkovic, S. J. (1993) Biochemistry 32, 14132-14138]. To identify the function of iron in the mammalian PAH's, we have undertaken a series of experiments to compare the mechanisms of this metal-independent PAH with the iron-dependent PAH from rat liver. Using [4-2H]phenylalanine as a substrate gave a kinetic isotope effect on hydroxylation of unity for CVPAH which is in agreement with previous values reported for RLPAH. The [4-2H]phenylalanine underwent an NIH shift upon hydroxylation by CVPAH. The extent of deuterium retention at the 3-position of the tyrosine product was identical within experimental error for both RLPAH and CVPAH using [4-2H]phenylalanine and [2,3,5,6-2H]phenylalanine as substrates. This suggests that PAH from either source probably does not directly mediate the NIH shift mechanism. No uncoupled pterin turnover was observed for CVPAH with either L-tyrosine or p-chloro-L-phenylalanine as substrate or tetrahydropterin as cofactor, each of which causes uncoupled turnover with RLPAH. CVPAH readily accepts 4-methylphenylalanine as a substrate giving 4-(hydroxymethyl)phenylalanine as the major product and 3-methyltyrosine as the only other minor product.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

苯丙氨酸羟化酶利用四氢生物蝶呤辅因子将苯丙氨酸转化为酪氨酸。几个关键的机制问题尚未得到解决,特别是羟化物种的身份以及所有哺乳动物苯丙氨酸羟化酶中存在的非血红素铁的作用。最近,我们已经证明,来自紫色色杆菌的一种细菌苯丙氨酸羟化酶在活性方面不需要任何氧化还原活性金属[卡尔,R.T.,& 本科维奇,S.J.(1993年)《生物化学》32卷,14132 - 14138页]。为了确定铁在哺乳动物苯丙氨酸羟化酶中的功能,我们进行了一系列实验,以比较这种不依赖金属的苯丙氨酸羟化酶与大鼠肝脏中依赖铁的苯丙氨酸羟化酶的机制。使用[4 - 2H]苯丙氨酸作为底物时,对紫色色杆菌苯丙氨酸羟化酶(CVPAH)的羟化反应产生了单位动力学同位素效应,这与之前报道的大鼠肝脏苯丙氨酸羟化酶(RLPAH)的值一致。[4 - 2H]苯丙氨酸在被CVPAH羟化时发生了NIH迁移。使用[4 - 2H]苯丙氨酸和[2,3,5,6 - 2H]苯丙氨酸作为底物时,对于RLPAH和CVPAH,酪氨酸产物3位上的氘保留程度在实验误差范围内是相同的。这表明来自任何一种来源的苯丙氨酸羟化酶可能都不直接介导NIH迁移机制。当以L - 酪氨酸或对氯 - L - 苯丙氨酸作为底物以及四氢蝶呤作为辅因子时,未观察到CVPAH的解偶联蝶呤周转,而每种情况都会导致RLPAH发生解偶联周转。CVPAH很容易接受4 - 甲基苯丙氨酸作为底物,产生4 - (羟甲基)苯丙氨酸作为主要产物,3 - 甲基酪氨酸作为唯一的其他次要产物。(摘要截短于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验