Suppr超能文献

海洋酸化逆转了海水pH值波动对形成栖息地的海带——辐射昆布的生长和光合作用的积极影响。

Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.

作者信息

Britton Damon, Cornwall Christopher E, Revill Andrew T, Hurd Catriona L, Johnson Craig R

机构信息

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia.

School of Earth and Environment, Oceans Institute, &ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, WA 6009, Australia.

出版信息

Sci Rep. 2016 May 27;6:26036. doi: 10.1038/srep26036.

Abstract

Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.

摘要

海洋酸化(OA)是指由于全球海洋吸收人类排放的二氧化碳导致海水pH值降低。预计到2100年,海洋表层平均pH值将下降0.4个单位。然而,在一些温带沿海系统中,海带通过光合作用和呼吸作用对海水pH值进行代谢调节,导致每日pH值波动高达±0.45个单位。目前尚不清楚这些pH值波动如何影响海带的生长和生理,以及在海洋酸化的情况下这种影响会如何变化。在实验室实验中,模拟了塔斯马尼亚形成冠层的海带辐射昆布藻床内测得的最极端pH值波动情况,幼年辐射昆布藻在pH值波动(白天8.4,夜间7.8)条件下的生长和光合速率高于静态pH值处理(8.4、8.1、7.8)。然而,当每个处理的平均pH值降低0.3个单位时,pH值波动对生长速率没有影响,但对光合作用有负面影响。目前,pH值波动对辐射昆布藻有积极影响,但在未来海洋酸化的情况下,这种影响可能会逆转,这可能会影响未来以辐射昆布藻为主的栖息地的生态动态和生产力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1ee/4882519/fe08c5e7dbcc/srep26036-f1.jpg

相似文献

3
Remnant kelp bed refugia and future phase-shifts under ocean acidification.
PLoS One. 2020 Oct 9;15(10):e0239136. doi: 10.1371/journal.pone.0239136. eCollection 2020.
4
Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification.
Proc Biol Sci. 2013 Oct 9;280(1772):20132201. doi: 10.1098/rspb.2013.2201. Print 2013 Dec 7.
6
Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp.
Proc Biol Sci. 2019 Feb 13;286(1896):20181887. doi: 10.1098/rspb.2018.1887.
9
How ocean acidification can benefit calcifiers.
Curr Biol. 2017 Feb 6;27(3):R95-R96. doi: 10.1016/j.cub.2016.12.004.

引用本文的文献

1
Assessing the role of natural kelp forests in modifying seawater chemistry.
Sci Rep. 2024 Sep 27;14(1):22386. doi: 10.1038/s41598-024-72801-5.
2
Knowledge mapping analysis of the global seaweed research using CiteSpace.
Heliyon. 2024 Mar 20;10(7):e28418. doi: 10.1016/j.heliyon.2024.e28418. eCollection 2024 Apr 15.
4
Understanding change in benthic marine systems.
Ann Bot. 2024 Mar 8;133(1):131-144. doi: 10.1093/aob/mcad187.
5
Water motion and pH jointly impact the availability of dissolved inorganic carbon to macroalgae.
Sci Rep. 2022 Dec 19;12(1):21947. doi: 10.1038/s41598-022-26517-z.
6
Net effect of environmental fluctuations in multiple global-change drivers across the tree of life.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2205495119. doi: 10.1073/pnas.2205495119. Epub 2022 Aug 1.
7
A framework to understand the role of biological time in responses to fluctuating climate drivers.
Sci Rep. 2022 Jun 21;12(1):10429. doi: 10.1038/s41598-022-13603-5.
8
The Marine Gastropod Remains Resilient to Ocean Acidification Across Two Life History Stages.
Front Physiol. 2021 Aug 25;12:702864. doi: 10.3389/fphys.2021.702864. eCollection 2021.
9
Remnant kelp bed refugia and future phase-shifts under ocean acidification.
PLoS One. 2020 Oct 9;15(10):e0239136. doi: 10.1371/journal.pone.0239136. eCollection 2020.
10
Fragmented kelp forest canopies retain their ability to alter local seawater chemistry.
Sci Rep. 2020 Jul 20;10(1):11939. doi: 10.1038/s41598-020-68841-2.

本文引用的文献

1
2
TESTING THE EFFECTS OF OCEAN ACIDIFICATION ON ALGAL METABOLISM: CONSIDERATIONS FOR EXPERIMENTAL DESIGNS(1).
J Phycol. 2009 Dec;45(6):1236-51. doi: 10.1111/j.1529-8817.2009.00768.x. Epub 2009 Nov 13.
3
CARBON-USE STRATEGIES IN MACROALGAE: DIFFERENTIAL RESPONSES TO LOWERED PH AND IMPLICATIONS FOR OCEAN ACIDIFICATION(1).
J Phycol. 2012 Feb;48(1):137-44. doi: 10.1111/j.1529-8817.2011.01085.x. Epub 2011 Dec 2.
5
Slow-flow habitats as refugia for coastal calcifiers from ocean acidification.
J Phycol. 2015 Aug;51(4):599-605. doi: 10.1111/jpy.12307. Epub 2015 Jun 26.
9
High prevalence of diffusive uptake of CO2 by macroalgae in a temperate subtidal ecosystem.
Photosynth Res. 2015 May;124(2):181-90. doi: 10.1007/s11120-015-0114-0. Epub 2015 Mar 5.
10
Contrasting effects of ocean acidification on tropical fleshy and calcareous algae.
PeerJ. 2014 May 27;2:e411. doi: 10.7717/peerj.411. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验