PyQuant:用于定量质谱数据分析的通用框架。

PyQuant: A Versatile Framework for Analysis of Quantitative Mass Spectrometry Data.

作者信息

Mitchell Christopher J, Kim Min-Sik, Na Chan Hyun, Pandey Akhilesh

机构信息

From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §§Ginkgo Bioworks, 27 Drydock Ave, Boston, MA 02210, USA

From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, South Korea;

出版信息

Mol Cell Proteomics. 2016 Aug;15(8):2829-38. doi: 10.1074/mcp.O115.056879. Epub 2016 May 26.

Abstract

Quantitative mass spectrometry data necessitates an analytical pipeline that captures the accuracy and comprehensiveness of the experiments. Currently, data analysis is often coupled to specific software packages, which restricts the analysis to a given workflow and precludes a more thorough characterization of the data by other complementary tools. To address this, we have developed PyQuant, a cross-platform mass spectrometry data quantification application that is compatible with existing frameworks and can be used as a stand-alone quantification tool. PyQuant supports most types of quantitative mass spectrometry data including SILAC, NeuCode, (15)N, (13)C, or (18)O and chemical methods such as iTRAQ or TMT and provides the option of adding custom labeling strategies. In addition, PyQuant can perform specialized analyses such as quantifying isotopically labeled samples where the label has been metabolized into other amino acids and targeted quantification of selected ions independent of spectral assignment. PyQuant is capable of quantifying search results from popular proteomic frameworks such as MaxQuant, Proteome Discoverer, and the Trans-Proteomic Pipeline in addition to several standalone search engines. We have found that PyQuant routinely quantifies a greater proportion of spectral assignments, with increases ranging from 25-45% in this study. Finally, PyQuant is capable of complementing spectral assignments between replicates to quantify ions missed because of lack of MS/MS fragmentation or that were omitted because of issues such as spectra quality or false discovery rates. This results in an increase of biologically useful data available for interpretation. In summary, PyQuant is a flexible mass spectrometry data quantification platform that is capable of interfacing with a variety of existing formats and is highly customizable, which permits easy configuration for custom analysis.

摘要

定量质谱数据需要一个能够体现实验准确性和全面性的分析流程。目前,数据分析通常与特定的软件包相结合,这将分析限制在给定的工作流程中,并且排除了使用其他补充工具对数据进行更全面表征的可能性。为了解决这个问题,我们开发了PyQuant,这是一个跨平台的质谱数据定量应用程序,它与现有框架兼容,可以用作独立的定量工具。PyQuant支持大多数类型的定量质谱数据,包括稳定同位素标记氨基酸法(SILAC)、新编码法(NeuCode)、(15)N、(13)C或(18)O以及化学方法,如串联质量标签(iTRAQ)或串联质谱标签(TMT),并提供添加自定义标记策略的选项。此外,PyQuant可以执行专门的分析,例如对同位素标记的样品进行定量,其中标记已代谢为其他氨基酸,以及对选定离子进行靶向定量,而无需依赖光谱分配。除了几个独立的搜索引擎外,PyQuant还能够对来自流行蛋白质组学框架(如MaxQuant、Proteome Discoverer和跨蛋白质组学管道)的搜索结果进行定量。我们发现,PyQuant通常能够对更大比例的光谱分配进行定量,在本研究中增加幅度为25%-45%。最后,PyQuant能够补充重复样本之间的光谱分配,以定量由于缺乏串联质谱(MS/MS)碎裂而遗漏的离子,或者由于光谱质量或错误发现率等问题而被省略的离子。这导致可用于解释的生物学有用数据增加。总之,PyQuant是一个灵活的质谱数据定量平台,能够与各种现有格式接口,并且高度可定制,这允许轻松配置以进行定制分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索