Suppr超能文献

利用双折射变化对神经动作电位进行实时成像。

Real-time imaging of action potentials in nerves using changes in birefringence.

作者信息

Badreddine Ali H, Jordan Tomas, Bigio Irving J

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.

Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA; Boston University Photonics Center, Boston University, Boston, MA 02215, USA.

出版信息

Biomed Opt Express. 2016 Apr 21;7(5):1966-73. doi: 10.1364/BOE.7.001966. eCollection 2016 May 1.

Abstract

Polarized light can be used to measure the electrical activity associated with action potential propagation in nerves, as manifested in simultaneous dynamic changes in their intrinsic optical birefringence. These signals may serve as a tool for minimally invasive neuroimaging in various types of neuroscience research, including the study of neuronal activation patterns with high spatiotemporal resolution. A fast linear photodiode array was used to image propagating action potentials in an excised portion of the lobster walking leg nerve. We show that the crossed-polarized signal (XPS) can be reliably imaged over a ≥2 cm span in our custom nerve chamber, by averaging multiple-stimulation signals, and also in single-scan real-time "movies". This demonstration paves the way toward utilizing changes in the optical birefringence to image more complex neuronal activity in nerve fibers and other organized neuronal tissue.

摘要

偏振光可用于测量与神经中动作电位传播相关的电活动,这表现为其固有光学双折射的同步动态变化。这些信号可作为一种工具,用于各类神经科学研究中的微创神经成像,包括对具有高时空分辨率的神经元激活模式的研究。使用快速线性光电二极管阵列对龙虾步足神经的离体部分中传播的动作电位进行成像。我们表明,通过对多个刺激信号进行平均,以及在单次扫描实时“电影”中,交叉偏振信号(XPS)能够在我们定制的神经腔室中≥2厘米的跨度上可靠成像。这一演示为利用光学双折射的变化来成像神经纤维和其他有组织的神经元组织中更复杂的神经元活动铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c2d/4871095/85c241e242cc/boe-7-5-1966-g001.jpg

相似文献

1
Real-time imaging of action potentials in nerves using changes in birefringence.
Biomed Opt Express. 2016 Apr 21;7(5):1966-73. doi: 10.1364/BOE.7.001966. eCollection 2016 May 1.
3
Elucidating the temporal dynamics of optical birefringence changes in crustacean nerves.
Biomed Opt Express. 2015 Sep 28;6(10):4165-78. doi: 10.1364/BOE.6.004165. eCollection 2015 Oct 1.
4
Optical birefringence changes in myelinated and unmyelinated nerves: A comparative study.
J Biophotonics. 2022 Oct;15(10):e202200028. doi: 10.1002/jbio.202200028. Epub 2022 Jul 8.
5
Change in optical activity of a lobster nerve associated with excitation.
J Physiol. 1987 Aug;389:223-53. doi: 10.1113/jphysiol.1987.sp016655.
6
Optimized birefringence changes during isolated nerve activation.
Appl Opt. 2005 Apr 10;44(11):2008-12. doi: 10.1364/ao.44.002008.
7
Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light.
Neuroimage. 2008 Apr 15;40(3):1034-43. doi: 10.1016/j.neuroimage.2007.12.055. Epub 2008 Jan 11.
8
Optically teasing apart neural swelling and depolarization.
Neuroscience. 2007 Mar 30;145(3):887-99. doi: 10.1016/j.neuroscience.2006.12.068. Epub 2007 Feb 14.
9
Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve.
J Neurosci Methods. 2004 May 30;135(1-2):9-16. doi: 10.1016/j.jneumeth.2003.11.010.
10
Changes in axon birefringence during the action potential.
J Physiol. 1970 Dec;211(2):495-515. doi: 10.1113/jphysiol.1970.sp009289.

引用本文的文献

2
Ultra-parallel label-free optophysiology of neural activity.
iScience. 2022 Apr 27;25(5):104307. doi: 10.1016/j.isci.2022.104307. eCollection 2022 May 20.
3
Quantitative Jones matrix imaging using vectorial Fourier ptychography.
Biomed Opt Express. 2022 Feb 14;13(3):1457-1470. doi: 10.1364/BOE.448804. eCollection 2022 Mar 1.
4
Optical Electrophysiology: Toward the Goal of Label-Free Voltage Imaging.
J Am Chem Soc. 2021 Jul 21;143(28):10482-10499. doi: 10.1021/jacs.1c02960. Epub 2021 Jun 30.
5
Detection of cellular micromotion by advanced signal processing.
Sci Rep. 2020 Nov 18;10(1):20078. doi: 10.1038/s41598-020-77015-z.
6
Label-free Optical Imaging of Membrane Potential.
Curr Opin Biomed Eng. 2019 Dec;12:118-125. doi: 10.1016/j.cobme.2019.11.001. Epub 2019 Nov 13.
7
Optical Electrophysiology in the Developing Heart.
J Cardiovasc Dev Dis. 2018 May 11;5(2):28. doi: 10.3390/jcdd5020028.
8
Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.
ACS Nano. 2018 May 22;12(5):4186-4193. doi: 10.1021/acsnano.8b00867. Epub 2018 Mar 28.
9
Label-free optical detection of action potential in mammalian neurons.
Biomed Opt Express. 2017 Jul 19;8(8):3700-3713. doi: 10.1364/BOE.8.003700. eCollection 2017 Aug 1.

本文引用的文献

1
Elucidating the temporal dynamics of optical birefringence changes in crustacean nerves.
Biomed Opt Express. 2015 Sep 28;6(10):4165-78. doi: 10.1364/BOE.6.004165. eCollection 2015 Oct 1.
3
Monitoring activity in neural circuits with genetically encoded indicators.
Front Mol Neurosci. 2014 Dec 5;7:97. doi: 10.3389/fnmol.2014.00097. eCollection 2014.
4
Global and local fMRI signals driven by neurons defined optogenetically by type and wiring.
Nature. 2010 Jun 10;465(7299):788-92. doi: 10.1038/nature09108.
5
Polarization properties of light backscattered from a two layer scattering medium.
Opt Express. 2000 Dec 4;7(12):395-402. doi: 10.1364/oe.7.000395.
6
Action potential propagation imaged with high temporal resolution near-infrared video microscopy and polarized light.
Neuroimage. 2008 Apr 15;40(3):1034-43. doi: 10.1016/j.neuroimage.2007.12.055. Epub 2008 Jan 11.
7
Optically teasing apart neural swelling and depolarization.
Neuroscience. 2007 Mar 30;145(3):887-99. doi: 10.1016/j.neuroscience.2006.12.068. Epub 2007 Feb 14.
8
The depolarization of crustacean nerve by stimulation or oxygen want.
J Physiol. 1929 Jul 25;67(4):325-42. doi: 10.1113/jphysiol.1929.sp002573.
9
Large-scale imaging of cortical network activity with calcium indicators.
Neurosci Res. 2005 Jun;52(2):132-8. doi: 10.1016/j.neures.2005.02.004. Epub 2005 Mar 17.
10
Cross-polarized reflected light measurement of fast optical responses associated with neural activation.
Biophys J. 2005 Jun;88(6):4170-7. doi: 10.1529/biophysj.104.052506. Epub 2005 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验