Iyer Rishyashring R, Liu Yuan-Zhi, Renteria Carlos A, Tibble Brian E, Choi Honggu, Žurauskas Mantas, Boppart Stephen A
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
iScience. 2022 Apr 27;25(5):104307. doi: 10.1016/j.isci.2022.104307. eCollection 2022 May 20.
The electrical activity of neurons has a spatiotemporal footprint that spans three orders of magnitude. Traditional electrophysiology lacks the spatial throughput to image the activity of an entire neural network; besides, labeled optical imaging using voltage-sensitive dyes and tracking Ca ion dynamics lack the versatility and speed to capture fast-spiking activity, respectively. We present a label-free optical imaging technique to image the changes to the optical path length and the local birefringence caused by neural activity, at 4,000 Hz, across a 200 × 200 μm region, and with micron-scale spatial resolution and 300-pm displacement sensitivity using Superfast Polarization-sensitive Off-axis Full-field Optical Coherence Microscopy (SPoOF OCM). The undulations in the optical responses from mammalian neuronal activity were matched with field-potential electrophysiology measurements and validated with channel blockers. By directly tracking the widefield neural activity at millisecond timescales and micrometer resolution, SPoOF OCM provides a framework to progress from low-throughput electrophysiology to high-throughput ultra-parallel label-free optophysiology.
神经元的电活动具有跨越三个数量级的时空足迹。传统电生理学缺乏对整个神经网络活动进行成像的空间通量;此外,使用电压敏感染料的标记光学成像和追踪钙离子动力学分别缺乏捕获快速放电活动的通用性和速度。我们提出了一种无标记光学成像技术,利用超快偏振敏感离轴全场光学相干显微镜(SPoOF OCM),以4000赫兹的频率,在200×200微米的区域内,以微米级空间分辨率和300皮米的位移灵敏度,对由神经活动引起的光程长度和局部双折射变化进行成像。来自哺乳动物神经元活动的光学响应波动与场电位电生理学测量结果相匹配,并用通道阻滞剂进行了验证。通过在毫秒时间尺度和微米分辨率下直接追踪宽场神经活动,SPoOF OCM提供了一个从低通量电生理学发展到高通量超并行无标记光生理学的框架。