Wambo Thierry O, Chen Liao Y, McHardy Stanton F, Tsin Andrew T
Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
Department of Physics, University of Texas at San Antonio, San Antonio, TX 78249, USA.
Biophys Chem. 2016 Jul-Aug;214-215:54-60. doi: 10.1016/j.bpc.2016.05.006. Epub 2016 May 18.
Human carbonic anhydrase II (hCAII) represents an ultimate example of the perfectly efficient metalloenzymes, which is capable of catalyzing the hydration of carbon dioxide with a rate approaching the diffusion controlled limit. Extensive experimental studies of this physiologically important metalloprotein have been done to elucidate the fundamentals of its enzymatic actions: what residues anchor the Zn(2+) (or another divalent cation) at the bottom of the binding pocket; how the relevant residues work concertedly with the divalent cation in the reversible conversions between CO2 and HCO3(-); what are the protonation states of the relevant residues and acetazolamide, an inhibitor complexed with hCAII, etc. In this article, we present a detailed computational study on the basis of the all-atom CHARMM force field where Zn(2+) is represented with a simple model of divalent cation using the transferrable parameters available from the current literature. We compute the hydration free energy of Zn(2+), the characteristics of hCAII-Zn(2+) complexation, and the absolute free energy of binding acetazolamide to the hCAII-Zn(2+) complex. In each of these three problems, our computed results agree with the experimental data within the known margin of error without making any case-by-case adjustments to the parameters. The quantitatively accurate insights we gain in this all-atom molecular dynamics study should be helpful in the search and design of more specific inhibitors of this and other carbonic anhydrases.
人类碳酸酐酶II(hCAII)是完美高效金属酶的典型例子,它能够催化二氧化碳水合反应,其速率接近扩散控制极限。针对这种具有重要生理意义的金属蛋白,已经开展了广泛的实验研究,以阐明其酶促作用的基本原理:哪些残基将Zn(2+)(或另一种二价阳离子)锚定在结合口袋底部;相关残基如何与二价阳离子协同作用,实现CO2和HCO3(-)之间的可逆转化;相关残基以及与hCAII结合的抑制剂乙酰唑胺的质子化状态等。在本文中,我们基于全原子CHARMM力场进行了详细的计算研究,其中Zn(2+)用二价阳离子的简单模型表示,使用的是现有文献中可转移的参数。我们计算了Zn(2+)的水合自由能、hCAII-Zn(2+)络合的特征以及乙酰唑胺与hCAII-Zn(2+)络合物结合的绝对自由能。在这三个问题中的每一个问题上,我们的计算结果在已知误差范围内与实验数据一致,无需对参数进行任何逐例调整。我们在这项全原子分子动力学研究中获得的定量准确见解,应该有助于寻找和设计针对这种及其他碳酸酐酶的更特异性抑制剂。