Department of Physics , University of Texas at San Antonio , San Antonio , Texas 78249 United States.
Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States.
ACS Chem Neurosci. 2018 Nov 21;9(11):2815-2823. doi: 10.1021/acschemneuro.8b00223. Epub 2018 Jun 11.
Fourteen glucose transporters (GLUTs) play essential roles in human physiology by facilitating glucose diffusion across the cell membrane. Due to its central role in the energy metabolism of the central nervous system, GLUT3 has been thoroughly investigated. However, the Gibbs free-energy gradient (what drives the facilitated diffusion of glucose) has not been mapped out along the transport path. Some fundamental questions remain. Here we present a molecular dynamics study of GLUT3 embedded in a lipid bilayer to quantify the free-energy profile along the entire transport path of attracting a β-d-glucose from the interstitium to the inside of GLUT3 and, from there, releasing it to the cytoplasm by Arrhenius thermal activation. From the free-energy profile, we elucidate the unique Michaelis-Menten characteristics of GLUT3, low K and high V, specifically suitable for neurons' high and constant demand of energy from their low-glucose environments. We compute GLUT3's binding free energy for β-d-glucose to be -4.6 kcal/mol in agreement with the experimental value of -4.4 kcal/mol ( K = 1.4 mM). We also compute the hydration energy of β-d-glucose, -18.0 kcal/mol vs the experimental data, -17.8 kcal/mol. In this, we establish a dynamics-based connection from GLUT3's crystal structure to its cellular thermodynamics with quantitative accuracy. We predict equal Arrhenius barriers for glucose uptake and efflux through GLUT3 to be tested in future experiments.
十四种葡萄糖转运蛋白(GLUTs)通过促进葡萄糖穿过细胞膜扩散,在人体生理学中发挥着重要作用。由于其在中枢神经系统能量代谢中的核心作用,GLUT3 已经得到了深入研究。然而,葡萄糖促进扩散的吉布斯自由能梯度(是什么驱动了葡萄糖的促进扩散)并没有沿着运输途径被描绘出来。一些基本问题仍然存在。在这里,我们通过分子动力学研究将 GLUT3 嵌入脂质双层中,以量化从细胞外间质吸引 β-d-葡萄糖到 GLUT3 内部并从那里通过 Arrhenius 热激活释放到细胞质的整个运输途径中的自由能分布。从自由能分布中,我们阐明了 GLUT3 的独特米氏门控特征,即低 K 和高 V,特别适合神经元从低糖环境中获取高且稳定的能量需求。我们计算出 GLUT3 与 β-d-葡萄糖的结合自由能为-4.6 kcal/mol,与实验值-4.4 kcal/mol(K=1.4 mM)一致。我们还计算出 β-d-葡萄糖的水合能为-18.0 kcal/mol,与实验数据-17.8 kcal/mol 相比。在这方面,我们建立了从 GLUT3 的晶体结构到其细胞热力学的基于动力学的定量联系。我们预测葡萄糖摄取和流出通过 GLUT3 的 Arrhenius 势垒相等,有待未来实验验证。