Remith Pongilat, Kalaiselvi Nallathamby
CSIR-Central Electrochemical Research Institute, Electrochemical Power Sources Division, CSIR-CECRI, Karaikudi, Tamilnadu, India.
Phys Chem Chem Phys. 2016 Jun 21;18(23):15854-60. doi: 10.1039/c6cp01984f. Epub 2016 May 27.
Porous micro/nanostructures of earth abundant and ecobenign metals are emerging as advanced green materials for use in electrochemical energy storage devices. We present here the custom designed construction of a hybrid architecture containing porous MnO microspheres, formed out of hierarchically assembled nanoparticles using a template-free co-precipitation method, wherein the sacrificial template growth of porous spheres has been obtained by a solution mediated and time dependent oxidation strategy. The nanoporous channels in the MnO microspheres and the nanosized primary particles of MnO anodes in synergy increase the electrolyte percolation, resulting in a discharge capacity of 1200 mA h g(-1) at a current density of 50 mA g(-1) and a capacity as high as 450 mA h g(-1) under the 1000 mA g(-1) condition. The study assumes importance based on the fact that engineering of electrode materials is typically challenging, wherein design, preparation and fabrication of tailor-made electrodes with a desirable micro/nanocrystalline assembly play a critical role, especially when recommended for high capacity and high-rate applications in electrochemical energy storage devices. Further, this communication elaborates the designed construction and validation of porous MnO microspheres engineered through a time dependent process protocol as economically viable and environmentally benign anodes for lithium-ion batteries.
地球上储量丰富且环境友好的金属的多孔微/纳米结构正成为用于电化学储能装置的先进绿色材料。我们在此展示了一种定制设计的混合结构的构建,该结构包含多孔MnO微球,其通过无模板共沉淀法由分层组装的纳米颗粒形成,其中多孔球的牺牲模板生长是通过溶液介导和时间依赖性氧化策略实现的。MnO微球中的纳米多孔通道与MnO阳极的纳米级初级颗粒协同作用,增加了电解质的渗透,在50 mA g(-1)的电流密度下放电容量为1200 mA h g(-1),在1000 mA g(-1)条件下容量高达450 mA h g(-1)。基于电极材料的工程设计通常具有挑战性这一事实,该研究具有重要意义,其中具有理想微/纳米晶体组装的定制电极的设计、制备和制造起着关键作用,特别是当推荐用于电化学储能装置的高容量和高倍率应用时。此外,本通讯阐述了通过时间依赖性工艺方案设计构建并验证的多孔MnO微球作为锂离子电池经济可行且环境友好的阳极。