Suppr超能文献

CACHE挑战#2:靶向严重急性呼吸综合征冠状病毒2解旋酶Nsp13的RNA位点。

CACHE Challenge #2: Targeting the RNA Site of the SARS-CoV-2 Helicase Nsp13.

作者信息

Herasymenko Oleksandra, Silva Madhushika, Abu-Saleh Abd Al-Aziz A, Ahmad Ayaz, Alvarado-Huayhuaz Jesus, Arce Oscar E A, Armstrong Roly J, Arrowsmith Cheryl, Bachta Kelly E, Beck Hartmut, Berta Denes, Bieniek Mateusz K, Blay Vincent, Bolotokova Albina, Bourne Philip E, Breznik Marko, Brown Peter J, Campbell Aaron D G, Carosati Emanuele, Chau Irene, Cole Daniel J, Cree Ben, Dehaen Wim, Denzinger Katrin, Dos Santos Machado Karina, Dunn Ian, Durai Prasannavenkatesh, Edfeldt Kristina, Edwards Aled, Fayne Darren, Felfoldi Daniel, Friston Kallie, Ghiabi Pegah, Gibson Elisa, Günther Judith, Gunnarsson Anders, Hillisch Alexander, Houston Douglas R, Jensen Jan Halborg, Harding Rachel J, Harris Kate S, Hoffer Laurent, Hogner Anders, Horton Joshua T, Houliston Scott, Hultquist Judd F, Hutchinson Ashley, Irwin John J, Jukič Marko, Kandwal Shubhangi, Karlova Andrea, Katis Vittorio L, Kich Ryan P, Kireev Dmitri, Koes David, Inniss Nicole L, Lessel Uta, Liu Sijie, Loppnau Peter, Lu Wei, Martino Sam, McGibbon Miles, Meiler Jens, Mettu Akhila, Money-Kyrle Sam, Moretti Rocco, Moroz Yurii S, Muvva Charuvaka, Newman Joseph A, Obendorf Leon, Paige Brooks, Pandit Amit, Park Keunwan, Perveen Sumera, Pirie Rachael, Poda Gennady, Protopopov Mykola, Pütter Vera, Ricci Federico, Roper Natalie J, Rosta Edina, Rzhetskaya Margarita, Sabnis Yogesh, Satchell Karla J F, Schmitt Kremer Frederico, Scott Thomas, Seitova Almagul, Steinmann Casper, Talagayev Valerij, Tarkhanova Olga O, Tatum Natalie J, Treleaven Dakota, Velasque Werhli Adriano, Walters W Patrick, Wang Xiaowen, Wells Jude, Wells Geoffrey, Westermaier Yvonne, Wolber Gerhard, Wortmann Lars, Zhang Jixian, Zhao Zheng, Zheng Shuangjia, Schapira Matthieu

机构信息

Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.

School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.

出版信息

J Chem Inf Model. 2025 Jul 14;65(13):6884-6898. doi: 10.1021/acs.jcim.5c00535. Epub 2025 Jun 20.

Abstract

A critical assessment of computational hit-finding experiments (CACHE) challenge was conducted to predict ligands for the SARS-CoV-2 Nsp13 helicase RNA binding site, a highly conserved COVID-19 target. Twenty-three participating teams comprised of computational chemists and data scientists used protein structure and data from fragment-screening paired with advanced computational and machine learning methods to each predict up to 100 inhibitory ligands. Across all teams, 1957 compounds were predicted and were subsequently procured from commercial catalogs for biophysical assays. Of these compounds, 0.7% were confirmed to bind to Nsp13 in a surface plasmon resonance assay. The six best-performing computational workflows used fragment growing, active learning, or conventional virtual screening with and without complementary deep-learning scoring functions. Follow-up functional assays resulted in identification of two compound scaffolds that bound Nsp13 with a below 10 μM and inhibited helicase activity. Overall, CACHE #2 participants were successful in identifying hit compound scaffolds targeting Nsp13, a central component of the coronavirus replication-transcription complex. Computational design strategies recurrently successful across the first two CACHE challenges include linking or growing docked or crystallized fragments and docking small and diverse libraries to train ultrafast machine-learning models. The CACHE #2 competition reveals how crowd-sourcing ligand prediction efforts using a distinct array of approaches followed with critical biophysical assays can result in novel lead compounds to advance drug discovery efforts.

摘要

开展了一项针对计算性命中发现实验(CACHE)的关键评估挑战,以预测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)非结构蛋白13(Nsp13)解旋酶RNA结合位点的配体,该位点是一个高度保守的2019冠状病毒病(COVID-19)靶点。由计算化学家与数据科学家组成的23个参与团队利用蛋白质结构以及片段筛选数据,并结合先进的计算方法和机器学习方法,各自预测多达100种抑制性配体。在所有团队中,共预测了1957种化合物,随后从商业目录中采购这些化合物用于生物物理分析。在这些化合物中,有0.7%在表面等离子体共振分析中被证实可与Nsp13结合。表现最佳的六种计算工作流程采用了片段生长、主动学习或传统虚拟筛选方法,同时使用或不使用互补的深度学习评分函数。后续的功能分析确定了两种化合物支架,它们与Nsp13的结合亲和力低于10 μM,并抑制了解旋酶活性。总体而言,CACHE #2的参与者成功识别出了靶向Nsp13的命中化合物支架,Nsp13是冠状病毒复制转录复合体的核心组成部分。在前两个CACHE挑战中反复取得成功的计算设计策略包括连接或生长对接或结晶的片段,以及对接小型多样的文库以训练超快速机器学习模型。CACHE #2竞赛揭示了如何通过众包配体预测工作,采用一系列不同的方法并辅之以关键的生物物理分析,从而产生新型先导化合物以推进药物研发工作。

相似文献

6
High throughput screening for SARS-CoV-2 helicase inhibitors.高通量筛选 SARS-CoV-2 解旋酶抑制剂。
SLAS Discov. 2024 Sep;29(6):100180. doi: 10.1016/j.slasd.2024.100180. Epub 2024 Aug 22.
8
Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.用于 SARS-CoV-2 感染诊断的快速、即时抗原检测。
Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3.

本文引用的文献

2
Structural Chemistry of Helicase Inhibition.解旋酶抑制的结构化学
J Med Chem. 2025 Feb 27;68(4):4022-4039. doi: 10.1021/acs.jmedchem.4c01909. Epub 2025 Feb 11.
6
When can AI deliver the drug discovery hits?人工智能何时能带来药物研发的突破?
Nat Rev Drug Discov. 2024 Mar;23(3):159-161. doi: 10.1038/d41573-024-00036-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验