Suppr超能文献

用于评估轻度认知障碍患者和阿尔茨海默病患者的自动语音分析

Automatic speech analysis for the assessment of patients with predementia and Alzheimer's disease.

作者信息

König Alexandra, Satt Aharon, Sorin Alexander, Hoory Ron, Toledo-Ronen Orith, Derreumaux Alexandre, Manera Valeria, Verhey Frans, Aalten Pauline, Robert Phillipe H, David Renaud

机构信息

Research Unit CoBTeK - Cognition Behaviour Technology, Edmond & Lily Safra Research Center, University of Nice Sophia Antipolis, Nice, France; Alzheimer Centre Limburg, Maastricht University Medical Center, School for Mental Health and Neuroscience, Maastricht, The Netherlands.

Speech Technologies, IBM Research, Haifa, Israel.

出版信息

Alzheimers Dement (Amst). 2015 Mar 29;1(1):112-24. doi: 10.1016/j.dadm.2014.11.012. eCollection 2015 Mar.

Abstract

BACKGROUND

To evaluate the interest of using automatic speech analyses for the assessment of mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD).

METHODS

Healthy elderly control (HC) subjects and patients with MCI or AD were recorded while performing several short cognitive vocal tasks. The voice recordings were processed, and the first vocal markers were extracted using speech signal processing techniques. Second, the vocal markers were tested to assess their "power" to distinguish among HC, MCI, and AD. The second step included training automatic classifiers for detecting MCI and AD, using machine learning methods and testing the detection accuracy.

RESULTS

The classification accuracy of automatic audio analyses were as follows: between HCs and those with MCI, 79% ± 5%; between HCs and those with AD, 87% ± 3%; and between those with MCI and those with AD, 80% ± 5%, demonstrating its assessment utility.

CONCLUSION

Automatic speech analyses could be an additional objective assessment tool for elderly with cognitive decline.

摘要

背景

评估使用自动语音分析来评估轻度认知障碍(MCI)和早期阿尔茨海默病(AD)的价值。

方法

在健康老年对照(HC)受试者以及MCI或AD患者执行多项简短认知语音任务时进行录音。对语音记录进行处理,并使用语音信号处理技术提取首批语音标志物。其次,对语音标志物进行测试,以评估其区分HC、MCI和AD的“能力”。第二步包括使用机器学习方法训练用于检测MCI和AD的自动分类器,并测试检测准确性。

结果

自动音频分析的分类准确率如下:HC与MCI患者之间为79%±5%;HC与AD患者之间为87%±3%;MCI患者与AD患者之间为80%±5%,证明了其评估效用。

结论

自动语音分析可能是认知功能减退老年人的一种额外客观评估工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fbd/4876915/2f11798c4012/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验