文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过人工智能语音分析检测和监测中风后认知障碍的方案:一项混合方法试点研究。

Protocol for detection and monitoring of post-stroke cognitive impairment through AI-powered speech analysis: a mixed methods pilot study.

作者信息

Shankar Ravi, Chew Effie, Bundele Anjali, Mukhopadhyay Amartya

机构信息

Medical Affairs - Research Innovation & Enterprise, Alexandra Hospital, National University Health System, Singapore, Singapore.

Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore, Singapore.

出版信息

Front Aging Neurosci. 2025 May 1;17:1581891. doi: 10.3389/fnagi.2025.1581891. eCollection 2025.


DOI:10.3389/fnagi.2025.1581891
PMID:40376094
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12078268/
Abstract

INTRODUCTION: Post-stroke cognitive impairment (PSCI) affects up to 75% of stroke survivors but remains challenging to detect with traditional neuropsychological assessments. Recent advances in artificial intelligence and natural language processing have opened new avenues for cognitive screening through speech analysis, yet their application to PSCI remains largely unexplored. This study aims to characterize speech markers of PSCI in the first-year post-stroke and evaluate their utility for predicting cognitive outcomes in a Singapore cohort. METHODS: This prospective mixed-methods study will recruit 30 stroke survivors from the Alexandra Hospital and National University Hospital in Singapore. Participants will be assessed at four timepoints: baseline (within 6 weeks of stroke onset), 3-, 6-, and 12-months post-stroke. At each visit, participants will complete the Montreal Cognitive Assessment (MoCA) and a standardized speech protocol comprising picture description and semi-structured conversation tasks. Speech recordings will be automatically transcribed using automated speech recognition (ASR) systems based on pretrained acoustic models, and comprehensive linguistic and acoustic features will be extracted. Machine learning models will be developed to predict MoCA-defined cognitive impairment. Statistical analysis will include correlation analysis between speech features and MoCA scores, as well as machine learning classification and regression models to predict cognitive impairment. Linear mixed-effects models will characterize trajectories of MoCA scores and speech features over time. Qualitative analysis will follow an inductive thematic approach to explore acceptability and usability of speech-based screening. DISCUSSION: This study represents a critical step toward developing speech-based digital biomarkers for PSCI detection that are sensitive, culturally appropriate, and clinically feasible. If validated, this approach could transform current models of PSCI care by enabling remote, frequent, and naturalistic monitoring of cognitive health, potentially improving outcomes through earlier intervention.

摘要

引言:中风后认知障碍(PSCI)影响多达75%的中风幸存者,但使用传统神经心理学评估进行检测仍具有挑战性。人工智能和自然语言处理的最新进展为通过语音分析进行认知筛查开辟了新途径,但其在PSCI中的应用在很大程度上仍未得到探索。本研究旨在描述中风后第一年PSCI的语音标志物,并评估其在新加坡队列中预测认知结果的效用。 方法:这项前瞻性混合方法研究将从新加坡亚历山德拉医院和国立大学医院招募30名中风幸存者。参与者将在四个时间点接受评估:基线(中风发作后6周内)、中风后3个月、6个月和12个月。每次就诊时,参与者将完成蒙特利尔认知评估(MoCA)以及包括图片描述和半结构化对话任务的标准化语音协议。语音记录将使用基于预训练声学模型的自动语音识别(ASR)系统自动转录,并提取全面的语言和声学特征。将开发机器学习模型来预测MoCA定义的认知障碍。统计分析将包括语音特征与MoCA分数之间的相关性分析,以及用于预测认知障碍的机器学习分类和回归模型。线性混合效应模型将描述MoCA分数和语音特征随时间的变化轨迹。定性分析将采用归纳主题方法,以探索基于语音的筛查的可接受性和可用性。 讨论:本研究是朝着开发用于PSCI检测的基于语音的数字生物标志物迈出的关键一步,这些生物标志物敏感、符合文化背景且在临床上可行。如果得到验证,这种方法可能会改变当前的PSCI护理模式,通过实现对认知健康的远程、频繁和自然主义监测,有可能通过早期干预改善结果。

相似文献

[1]
Protocol for detection and monitoring of post-stroke cognitive impairment through AI-powered speech analysis: a mixed methods pilot study.

Front Aging Neurosci. 2025-5-1

[2]
Prediction of post-stroke cognitive impairment by Montreal Cognitive Assessment (MoCA) performances in acute stroke: comparison of three normative datasets.

Aging Clin Exp Res. 2022-8

[3]
The Impact of Vascular Risk Factors on Post-stroke Cognitive Impairment: The Nor-COAST Study.

Front Neurol. 2021-8-5

[4]
Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning.

Alzheimers Res Ther. 2023-8-31

[5]
Domain-Specific Cognitive Trajectories Among Patients with Minor Stroke or Transient Ischemic Attack in a 6-Year Prospective Asian Cohort: Serial Patterns and Indicators.

J Alzheimers Dis. 2021

[6]
Development and validation of a clinical model (DREAM-LDL) for post-stroke cognitive impairment at 6 months.

Aging (Albany NY). 2021-9-10

[7]
Post-stroke cognitive impairment remains highly prevalent and disabling despite state-of-the-art stroke treatment.

Int J Stroke. 2024-10

[8]
Cognitive function in stroke survivors: A 10-year follow-up study.

Acta Neurol Scand. 2017-9

[9]
Evaluation of the Mini-Mental State Examination and the Montreal Cognitive Assessment for Predicting Post-stroke Cognitive Impairment During the Acute Phase in Chinese Minor Stroke Patients.

Front Aging Neurosci. 2020-8-6

[10]
Effect of tDCS combined with virtual reality for post-stroke cognitive impairment: a randomized controlled trial study protocol.

BMC Complement Med Ther. 2024-10-2

本文引用的文献

[1]
Clinical Decision Support Using Speech Signal Analysis: Systematic Scoping Review of Neurological Disorders.

J Med Internet Res. 2025-1-13

[2]
Remote ischaemic conditioning for neurological disorders-a systematic review and narrative synthesis.

Syst Rev. 2024-12-19

[3]
Prediction of post-stroke cognitive impairment after acute ischemic stroke using machine learning.

Alzheimers Res Ther. 2023-8-31

[4]
Mapping spoken language and cognitive deficits in post-stroke aphasia.

Neuroimage Clin. 2023

[5]
Current Update on the Clinical Utility of MMSE and MoCA for Stroke Patients in Asia: A Systematic Review.

Int J Environ Res Public Health. 2021-8-25

[6]
Ten Years of Research on Automatic Voice and Speech Analysis of People With Alzheimer's Disease and Mild Cognitive Impairment: A Systematic Review Article.

Front Psychol. 2021-3-23

[7]
Linguistic markers predict onset of Alzheimer's disease.

EClinicalMedicine. 2020-10-22

[8]
Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations.

Digit Biomark. 2020-10-19

[9]
Artificial Intelligence, Speech, and Language Processing Approaches to Monitoring Alzheimer's Disease: A Systematic Review.

J Alzheimers Dis. 2020

[10]
Evaluating the granularity and statistical structure of lesions and behaviour in post-stroke aphasia.

Brain Commun. 2020-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索