Shankar Ravi, Chew Effie, Bundele Anjali, Mukhopadhyay Amartya
Medical Affairs - Research Innovation & Enterprise, Alexandra Hospital, National University Health System, Singapore, Singapore.
Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore, Singapore.
Front Aging Neurosci. 2025 May 1;17:1581891. doi: 10.3389/fnagi.2025.1581891. eCollection 2025.
INTRODUCTION: Post-stroke cognitive impairment (PSCI) affects up to 75% of stroke survivors but remains challenging to detect with traditional neuropsychological assessments. Recent advances in artificial intelligence and natural language processing have opened new avenues for cognitive screening through speech analysis, yet their application to PSCI remains largely unexplored. This study aims to characterize speech markers of PSCI in the first-year post-stroke and evaluate their utility for predicting cognitive outcomes in a Singapore cohort. METHODS: This prospective mixed-methods study will recruit 30 stroke survivors from the Alexandra Hospital and National University Hospital in Singapore. Participants will be assessed at four timepoints: baseline (within 6 weeks of stroke onset), 3-, 6-, and 12-months post-stroke. At each visit, participants will complete the Montreal Cognitive Assessment (MoCA) and a standardized speech protocol comprising picture description and semi-structured conversation tasks. Speech recordings will be automatically transcribed using automated speech recognition (ASR) systems based on pretrained acoustic models, and comprehensive linguistic and acoustic features will be extracted. Machine learning models will be developed to predict MoCA-defined cognitive impairment. Statistical analysis will include correlation analysis between speech features and MoCA scores, as well as machine learning classification and regression models to predict cognitive impairment. Linear mixed-effects models will characterize trajectories of MoCA scores and speech features over time. Qualitative analysis will follow an inductive thematic approach to explore acceptability and usability of speech-based screening. DISCUSSION: This study represents a critical step toward developing speech-based digital biomarkers for PSCI detection that are sensitive, culturally appropriate, and clinically feasible. If validated, this approach could transform current models of PSCI care by enabling remote, frequent, and naturalistic monitoring of cognitive health, potentially improving outcomes through earlier intervention.
引言:中风后认知障碍(PSCI)影响多达75%的中风幸存者,但使用传统神经心理学评估进行检测仍具有挑战性。人工智能和自然语言处理的最新进展为通过语音分析进行认知筛查开辟了新途径,但其在PSCI中的应用在很大程度上仍未得到探索。本研究旨在描述中风后第一年PSCI的语音标志物,并评估其在新加坡队列中预测认知结果的效用。 方法:这项前瞻性混合方法研究将从新加坡亚历山德拉医院和国立大学医院招募30名中风幸存者。参与者将在四个时间点接受评估:基线(中风发作后6周内)、中风后3个月、6个月和12个月。每次就诊时,参与者将完成蒙特利尔认知评估(MoCA)以及包括图片描述和半结构化对话任务的标准化语音协议。语音记录将使用基于预训练声学模型的自动语音识别(ASR)系统自动转录,并提取全面的语言和声学特征。将开发机器学习模型来预测MoCA定义的认知障碍。统计分析将包括语音特征与MoCA分数之间的相关性分析,以及用于预测认知障碍的机器学习分类和回归模型。线性混合效应模型将描述MoCA分数和语音特征随时间的变化轨迹。定性分析将采用归纳主题方法,以探索基于语音的筛查的可接受性和可用性。 讨论:本研究是朝着开发用于PSCI检测的基于语音的数字生物标志物迈出的关键一步,这些生物标志物敏感、符合文化背景且在临床上可行。如果得到验证,这种方法可能会改变当前的PSCI护理模式,通过实现对认知健康的远程、频繁和自然主义监测,有可能通过早期干预改善结果。
Alzheimers Res Ther. 2023-8-31
Aging (Albany NY). 2021-9-10
Acta Neurol Scand. 2017-9
BMC Complement Med Ther. 2024-10-2
J Med Internet Res. 2025-1-13
Alzheimers Res Ther. 2023-8-31
Neuroimage Clin. 2023
Int J Environ Res Public Health. 2021-8-25
EClinicalMedicine. 2020-10-22
Digit Biomark. 2020-10-19