Suppr超能文献

从传统生物标志物到数字生物标志物的神经退行性疾病诊断与监测的发展

Development of Neurodegenerative Disease Diagnosis and Monitoring from Traditional to Digital Biomarkers.

作者信息

Song Jaeyoon, Cho Eunseo, Lee Huiseop, Lee Suyoung, Kim Sehyeon, Kim Jinsik

机构信息

Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea.

出版信息

Biosensors (Basel). 2025 Feb 11;15(2):102. doi: 10.3390/bios15020102.

Abstract

Monitoring and assessing the progression of symptoms in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are critical for improving patient outcomes. Traditional biomarkers, such as cerebrospinal fluid analysis and brain imaging, are widely used to investigate the underlying mechanisms of disease and enable early diagnosis. In contrast, digital biomarkers derived from phenotypic changes-such as EEG, eye movement, gait, and speech analysis-offer a noninvasive and accessible alternative. Leveraging portable and widely available devices, such as smartphones and wearable sensors, digital biomarkers are emerging as a promising tool for ND diagnosis and monitoring. This review highlights the comprehensive developments in digital biomarkers, emphasizing their unique advantages and integration potential alongside traditional biomarkers.

摘要

监测和评估神经退行性疾病(包括阿尔茨海默病和帕金森病)的症状进展对于改善患者预后至关重要。传统生物标志物,如脑脊液分析和脑成像,被广泛用于研究疾病的潜在机制并实现早期诊断。相比之下,从表型变化(如脑电图、眼动、步态和语音分析)中衍生出的数字生物标志物提供了一种非侵入性且易于获取的替代方法。利用智能手机和可穿戴传感器等便携式且广泛可用的设备,数字生物标志物正成为神经退行性疾病诊断和监测的一种有前景的工具。本综述重点介绍了数字生物标志物的全面发展,强调了它们相对于传统生物标志物的独特优势和整合潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9d/11852611/96e74efc5e66/biosensors-15-00102-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验