Petron Arthur, Duval Jean-Francois, Herr Hugh
IEEE Trans Neural Syst Rehabil Eng. 2017 May;25(5):426-435. doi: 10.1109/TNSRE.2016.2572168. Epub 2016 May 24.
Biomechanical tissue properties have been hypothesized to play a critical role in the quantification of prosthetic socket production for individuals with limb amputation. In this investigation, a novel indenter platform is presented and its performance evaluated for the purposes of residual-limb tissue characterization. The indenter comprised 14 position- and force-controllable actuators that circumferentially surround a biological residuum to form an actuator ring. Each indenter actuator was individually controllable in position ( [Formula: see text] accuracy) and force (330 mN accuracy) at a PC controller feedback rate of 500 Hz, allowing for a range of measurement across a residual stump. Data were collected from 162 sensors over an EtherCAT fieldbus to characterize the mechanical hyperviscoelastic tissue response of two transtibial residual-limbs from a study participant with bilateral amputations. At five distinct anatomical locations across the residual-limb, force versus deflection data-including hyperviscoelastic tissue properties-are presented, demonstrating the accuracy and versatility of the multi-indenter platform for residual-limb tissue characterization.
生物力学组织特性被认为在肢体截肢个体的假肢接受腔生产量化中起着关键作用。在本研究中,提出了一种新型压头平台,并对其性能进行评估,以用于残肢组织表征。该压头由14个位置和力可控的致动器组成,这些致动器环绕生物残肢形成一个致动器环。每个压头致动器在PC控制器500 Hz的反馈速率下,位置(精度为[公式:见原文])和力(精度为330 mN)可单独控制,从而能够在残肢上进行一系列测量。通过EtherCAT现场总线从162个传感器收集数据,以表征来自一名双侧截肢研究参与者的两条经胫残肢的机械超粘弹性组织响应。在残肢的五个不同解剖位置,给出了力与位移数据,包括超粘弹性组织特性,证明了多压头平台在残肢组织表征方面的准确性和通用性。
IEEE Trans Neural Syst Rehabil Eng. 2017-5
IEEE Trans Biomed Eng. 2017-7
IEEE Trans Neural Syst Rehabil Eng. 2003-3
Annu Int Conf IEEE Eng Med Biol Soc. 2009
Proc Inst Mech Eng H. 2013-12
Biomed Microdevices. 2013-4
Physiol Meas. 2005-6
Proc Inst Mech Eng H. 2024-3
Front Neurorobot. 2022-2-18
Front Robot AI. 2021-1-18
Biomed Eng Lett. 2019-11-12