Mbithi F M, Chipperfield A J, Steer J W, Dickinson A S
Mechanical Engineering Department, University of Southampton, Highfield Campus, Southampton, SO17 1BJ UK.
Biomed Eng Lett. 2021 Dec 2;12(1):59-73. doi: 10.1007/s13534-021-00211-x. eCollection 2022 Feb.
To perform activities of daily living (ADL), people with lower limb amputation depend on the prosthetic socket for stability and proprioceptive feedback. Poorly fitting sockets can cause discomfort, pain, limb tissue injuries, limited device usage, and potential rejection. Semi-passively controlled adjustable socket technologies exist, but these depend upon the user's perception to determine safe interfacial pressure levels. This paper presents a framework for automatic control of an adjustable transtibial prosthetic socket that enables active adaptation of residuum-socket interfacial loading through localized actuators, based on soft tissue injury risk estimation. Using finite element analysis, local interfacial pressure vs. compressive tissue strain relationships were estimated for three discrete anatomical actuator locations, for tissue injury risk assessment within a control structure. Generalized Predictive Control of multiple actuators was implemented to maintain interfacial pressure within estimated safe and functional limits. Controller simulation predicted satisfactory dynamic performance in several scenarios. Actuation rates of 0.06-1.51 kPa/s with 0.67% maximum overshoot, and 0.75-1.58 kPa/s were estimated for continuous walking, and for a demonstrative loading sequence of ADL, respectively. The developed platform could be useful for extending recent efforts in adjustable lower limb prosthetic socket design, particularly for individuals with residuum sensory impairment.
为了进行日常生活活动(ADL),下肢截肢者依靠假肢接受腔来保持稳定并获得本体感觉反馈。不合适的接受腔会导致不适、疼痛、肢体组织损伤、设备使用受限以及可能的排斥反应。虽然存在半被动控制的可调节接受腔技术,但这些技术依赖于用户的感知来确定安全的界面压力水平。本文提出了一种用于自动控制可调节经胫假肢接受腔的框架,该框架基于软组织损伤风险估计,通过局部致动器实现残肢 - 接受腔界面负荷的主动适应。利用有限元分析,针对三个离散的解剖学致动器位置估计了局部界面压力与压缩组织应变的关系,用于控制结构内的组织损伤风险评估。实施了多个致动器的广义预测控制,以将界面压力维持在估计的安全和功能极限内。控制器仿真预测了在几种情况下令人满意的动态性能。连续行走时的致动速率估计为0.06 - 1.51 kPa/s,最大超调量为0.67%,对于ADL的演示加载序列,致动速率分别为0.75 - 1.58 kPa/s。所开发的平台可能有助于扩展近期在可调节下肢假肢接受腔设计方面的努力,特别是对于有残肢感觉障碍的个体。
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
Prosthet Orthot Int. 2021-4-1
Proc Inst Mech Eng H. 2017-3
Bioengineering (Basel). 2019-10-24
Prosthet Orthot Int. 2019-6
Foot Ankle Int. 2014-8
Biomech Model Mechanobiol. 2020-8
Can Prosthet Orthot J. 2021-9-21
Prosthet Orthot Int. 2021-4-1
Biomed Eng Lett. 2019-8-8
Biomed Eng Lett. 2019-11-12
Annu Int Conf IEEE Eng Med Biol Soc. 2019-7
IEEE Trans Neural Syst Rehabil Eng. 2017-5