Suppr超能文献

[使用Ventrain®急救呼吸机时监测潮气量]

[Monitoring tidal volumes when using the Ventrain® emergency ventilator].

作者信息

Schmidt A R, Ruetzler K, Haas T, Schmitz A, Weiss M

机构信息

Anästhesie-Abteilung, Universitäts-Kinderspital Zürich, Steinwiesstrasse 75, 8032, Zürich, Schweiz.

Forschungszentrum für das Kind, Universitäts-Kinderspital Zürich, Zürich, Schweiz.

出版信息

Anaesthesist. 2016 Jul;65(7):514-20. doi: 10.1007/s00101-016-0161-8. Epub 2016 May 31.

Abstract

BACKGROUND

The Ventrain® emergency ventilation device allows active inspiration and expiration through transtracheal catheters or the lumen of an airway exchange catheter. This single-use handheld device is manually operated and driven by an external pressurized oxygen source. The Ventrain® may be used to ventilate patients with a complete or pending upper airway obstruction reducing the risk of barotrauma due to the possibility of active expiration. However tidal volumes (V T) applied and withdrawn with the Ventrain® can only be controlled by visual inspection of chest movements; V T monitoring is not provided. Excessive inspiratory volumes or air trapping due to insufficient expiration may remain clinically undetected until pulmonary trauma and/or cardio-respiratory deterioration occur. Active expiration itself carries the risk of overwhelming lung deflation with the formation of atelectasis. Thus, an inspiratory and expiratory tidal volume monitor is urgently required. The aim of this study was to evaluate efficacy and precision of the Florian respiratory function monitor (RFM) to monitor in- and expiratory V T administered by the Ventrain® emergency ventilation device through a small cannula to the ASL 5000 test lung (ASL).

METHODS

In an in-vitro setting the RFM was used with its neonatal flow sensor to monitor inspiratory and expiratory V T applied by the Ventrain® emergency ventilation device through a 2 mm internal diameter (ID) transtracheal catheter to the ASL. Driving flows of 6, 9, 12 and 15 l min(-1) were chosen to vary tidal volumes at a constant respiratory rate of 15 min(-1) and an I:E ratio of 1:1. Experiments were repeated five times with two flow sensors. An initial set-up calibration run was performed to calculate a bias correction factor for inspiratory and expiratory V T measured by the RFM. This bias correction factor was used to simulate a correction of the in the RFM programmed linearization table. In a second, identical setting the experiments were repeated five times with two flow sensors. V T measured by the adjusted RFM were compared with those obtained from the ASL 5000 in this second run and the percentage differences were calculated. Bland Altman analysis was used to investigate the agreement of inspiratory or expiratory VT measured by both methods (ASL and RFM). Calculation of the mean of differences between both methods is given as bias and the 95 % agreement interval as precision.

RESULTS

Tidal volumes measured by the ASL ranged from 140 to 675 ml. The percentage correction factor was 16.27 % (2.60 %) during inspiration for V T ranged from 0 to 700 ml and 11.51 % (2.56 %) during expiration for V T of 0 to 225 ml, 7.41 % (2.94 %) for VT 226 to 325 ml and 5.35 % (3.57 %) for TV e > 325 ml. Inspiratory and expiratory tidal volumes measured by the adjusted RFM demonstrated a percentage deviation (mean [SD]) of 2.59 % (1.86 %) during inspiration and 1.66 % (1.14 %) during expiration when compared with the ASL 5000. Bias (precision) of the Bland Altman plot for the adjusted RFM is 2.05 ml (23.20) during inspiration and 4.62 ml (10.40) for expiration.

CONCLUSION

The tested respiratory function monitor using hot-wire anemometer technology has the potential to monitor tidal volumes applied by the Ventrain®. With the software thus adapted, the RFM measures precise inspiratory and expiratory tidal volumes within common technical tolerance. This could help perform adequate patient ventilation with Ventrain® and reduce the potential risk of patient trauma.

摘要

背景

Ventrain® 紧急通气设备可通过经气管导管或气道交换导管的内腔实现主动吸气和呼气。这种一次性手持设备由外部加压氧气源手动操作驱动。Ventrain® 可用于为上呼吸道完全阻塞或即将发生阻塞的患者进行通气,由于存在主动呼气的可能性,从而降低了气压伤的风险。然而,使用Ventrain® 施加和抽出的潮气量(VT)只能通过目视观察胸部运动来控制;未提供VT监测功能。在发生肺损伤和/或心肺功能恶化之前,临床上可能无法检测到由于呼气不足导致的吸气量过多或气体潴留。主动呼气本身存在导致肺过度萎陷并形成肺不张的风险。因此,迫切需要一种吸气和呼气潮气量监测器。本研究的目的是评估Florian呼吸功能监测仪(RFM)通过小套管向ASL 5000测试肺(ASL)输送由Ventrain® 紧急通气设备给予的吸气和呼气VT的有效性和准确性。

方法

在体外环境中,使用RFM及其新生儿流量传感器监测Ventrain® 紧急通气设备通过内径2毫米(ID)的经气管导管向ASL输送的吸气和呼气VT。选择6、9、12和15升/分钟的驱动气流,以在15次/分钟的恒定呼吸频率和1:1的吸呼比下改变潮气量。使用两个流量传感器重复实验五次。进行初始设置校准运行,以计算RFM测量的吸气和呼气VT的偏差校正因子。该偏差校正因子用于模拟RFM编程线性化表中的校正。在第二个相同的设置中,使用两个流量传感器重复实验五次。将调整后的RFM测量的VT与第二次运行中从ASL 5000获得的VT进行比较,并计算百分比差异。采用Bland Altman分析来研究两种方法(ASL和RFM)测量的吸气或呼气VT的一致性。两种方法之间差异的平均值计算为偏差,95%一致性区间计算为精度。

结果

ASL测量的潮气量范围为140至675毫升。对于0至700毫升的VT,吸气期间的百分比校正因子为16.27%(2.60%);对于0至225毫升的VT,呼气期间为11.51%(2.56%);对于226至325毫升的VT为7.41%(2.94%);对于TV e>325毫升为5.35%(3.57%)。与ASL 5000相比,调整后的RFM测量的吸气和呼气潮气量在吸气期间的百分比偏差(平均值[标准差])为2.59%(1.86%),呼气期间为1.66%(1.14%)。调整后的RFM的Bland Altman图的偏差(精度)在吸气期间为2.05毫升(23.20),呼气期间为4.62毫升(10.40)。

结论

经测试的采用热线风速仪技术的呼吸功能监测仪有潜力监测Ventrain® 给予的潮气量。通过如此适配的软件,RFM可在常见技术公差范围内精确测量吸气和呼气潮气量。这有助于使用Ventrain® 对患者进行充分通气,并降低患者受伤的潜在风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验