Vickers Mathew, Schwarzkopf Lin
Centre for Tropical Biology and Climate Change College of Marine and Environmental Sciences James Cook University Townsville Queensland 4814 Australia; CSIRO ATSIP James Cook University Townsville Queensland 4810 Australia; Oulalab, Centre National de la Recherche Scientifique Station d'Ecologie Experimentale Moulis 2 Route du CNRS Moulis 09200 France.
Centre for Tropical Biology and Climate Change College of Marine and Environmental Sciences James Cook University Townsville Queensland 4814 Australia.
Ecol Evol. 2016 Mar 31;6(10):3059-66. doi: 10.1002/ece3.1961. eCollection 2016 May.
To study behavioral thermoregulation, it is useful to use thermal sensors and physical models to collect environmental temperatures that are used to predict organism body temperature. Many techniques involve expensive or numerous types of sensors (cast copper models, or temperature, humidity, radiation, and wind speed sensors) to collect the microhabitat data necessary to predict body temperatures. Expense and diversity of requisite sensors can limit sampling resolution and accessibility of these methods. We compare body temperature predictions of small lizards from iButtons, DS18B20 sensors, and simple copper models, in both laboratory and natural conditions. Our aim was to develop an inexpensive yet accurate method for body temperature prediction. Either method was applicable given appropriate parameterization of the heat transfer equation used. The simplest and cheapest method was DS18B20 sensors attached to a small recording computer. There was little if any deficit in precision or accuracy compared to other published methods. We show how the heat transfer equation can be parameterized, and it can also be used to predict body temperature from historically collected data, allowing strong comparisons between current and previous environmental temperatures using the most modern techniques. Our simple method uses very cheap sensors and loggers to extensively sample habitat temperature, improving our understanding of microhabitat structure and thermal variability with respect to small ectotherms. While our method was quite precise, we feel any potential loss in accuracy is offset by the increase in sample resolution, important as it is increasingly apparent that, particularly for small ectotherms, habitat thermal heterogeneity is the strongest influence on transient body temperature.
为了研究行为体温调节,使用热传感器和物理模型来收集用于预测生物体体温的环境温度是很有用的。许多技术涉及昂贵或多种类型的传感器(铸铜模型,或温度、湿度、辐射和风速传感器)来收集预测体温所需的微生境数据。所需传感器的成本和多样性可能会限制这些方法的采样分辨率和可及性。我们在实验室和自然条件下比较了iButtons、DS18B20传感器和简单铜模型对小型蜥蜴体温的预测。我们的目标是开发一种既便宜又准确的体温预测方法。给定所使用的传热方程的适当参数化,两种方法都是适用的。最简单、最便宜的方法是将DS18B20传感器连接到一台小型记录计算机上。与其他已发表的方法相比,在精度或准确性方面几乎没有任何不足。我们展示了如何对传热方程进行参数化,并且它还可以用于根据历史收集的数据预测体温,从而能够使用最现代的技术对当前和以前的环境温度进行有力比较。我们的简单方法使用非常便宜的传感器和记录器来广泛采样栖息地温度,增进了我们对小型变温动物微生境结构和热变异性的理解。虽然我们的方法相当精确,但我们认为,由于样本分辨率的提高,精度上的任何潜在损失都得到了弥补,这一点很重要,因为越来越明显的是,特别是对于小型变温动物来说,栖息地热异质性是对瞬时体温的最强影响因素。