Suppr超能文献

基于磁共振成像的计算模型和决策树分析对肺动脉高压的诊断

Diagnosis of pulmonary hypertension from magnetic resonance imaging-based computational models and decision tree analysis.

作者信息

Lungu Angela, Swift Andrew J, Capener David, Kiely David, Hose Rod, Wild Jim M

机构信息

Cardiovascular Science Department, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, South Yorkshire, United Kingdom.

Cardiovascular Science Department, University of Sheffield, Sheffield, South Yorkshire, United Kingdom.

出版信息

Pulm Circ. 2016 Jun;6(2):181-90. doi: 10.1086/686020.

Abstract

Accurately identifying patients with pulmonary hypertension (PH) using noninvasive methods is challenging, and right heart catheterization (RHC) is the gold standard. Magnetic resonance imaging (MRI) has been proposed as an alternative to echocardiography and RHC in the assessment of cardiac function and pulmonary hemodynamics in patients with suspected PH. The aim of this study was to assess whether machine learning using computational modeling techniques and image-based metrics of PH can improve the diagnostic accuracy of MRI in PH. Seventy-two patients with suspected PH attending a referral center underwent RHC and MRI within 48 hours. Fifty-seven patients were diagnosed with PH, and 15 had no PH. A number of functional and structural cardiac and cardiovascular markers derived from 2 mathematical models and also solely from MRI of the main pulmonary artery and heart were integrated into a classification algorithm to investigate the diagnostic utility of the combination of the individual markers. A physiological marker based on the quantification of wave reflection in the pulmonary artery was shown to perform best individually, but optimal diagnostic performance was found by the combination of several image-based markers. Classifier results, validated using leave-one-out cross validation, demonstrated that combining computation-derived metrics reflecting hemodynamic changes in the pulmonary vasculature with measurement of right ventricular morphology and function, in a decision support algorithm, provides a method to noninvasively diagnose PH with high accuracy (92%). The high diagnostic accuracy of these MRI-based model parameters may reduce the need for RHC in patients with suspected PH.

摘要

使用非侵入性方法准确识别肺动脉高压(PH)患者具有挑战性,而右心导管检查(RHC)是金标准。磁共振成像(MRI)已被提议作为超声心动图和RHC的替代方法,用于评估疑似PH患者的心脏功能和肺血流动力学。本研究的目的是评估使用计算建模技术和基于图像的PH指标的机器学习是否可以提高MRI对PH的诊断准确性。72例疑似PH患者在转诊中心就诊,并在48小时内接受了RHC和MRI检查。57例患者被诊断为PH,15例无PH。从2个数学模型以及仅从主肺动脉和心脏的MRI中得出的一些心脏和心血管功能及结构标志物被整合到一个分类算法中,以研究单个标志物组合的诊断效用。基于肺动脉波反射量化的生理标志物单独表现最佳,但通过几种基于图像的标志物组合发现了最佳诊断性能。使用留一法交叉验证进行验证的分类器结果表明,在决策支持算法中,将反映肺血管系统血流动力学变化的计算得出的指标与右心室形态和功能测量相结合,提供了一种以高精度(92%)无创诊断PH的方法。这些基于MRI的模型参数的高诊断准确性可能会减少疑似PH患者对RHC的需求。

相似文献

2
Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry.
JACC Cardiovasc Imaging. 2013 Oct;6(10):1036-1047. doi: 10.1016/j.jcmg.2013.01.013. Epub 2013 Jun 13.
5
A non-invasive assessment of cardiopulmonary hemodynamics with MRI in pulmonary hypertension.
Magn Reson Imaging. 2015 Dec;33(10):1224-1235. doi: 10.1016/j.mri.2015.08.005. Epub 2015 Aug 14.
8
A pulmonary hypertension targeted algorithm to improve referral to right heart catheterization: A machine learning approach.
Comput Struct Biotechnol J. 2024 Nov 22;24:746-753. doi: 10.1016/j.csbj.2024.11.031. eCollection 2024 Dec.

引用本文的文献

1
Development and Evaluation of a Deep Learning-Based Pulmonary Hypertension Screening Algorithm Using a Digital Stethoscope.
J Am Heart Assoc. 2025 Feb 4;14(3):e036882. doi: 10.1161/JAHA.124.036882. Epub 2025 Feb 3.
2
A Comprehensive Review of Artificial Intelligence (AI) Applications in Pulmonary Hypertension (PH).
Medicina (Kaunas). 2025 Jan 7;61(1):85. doi: 10.3390/medicina61010085.
4
An In Silico Modelling Approach to Predict Hemodynamic Outcomes in Diabetic and Hypertensive Kidney Disease.
Ann Biomed Eng. 2024 Nov;52(11):3098-3112. doi: 10.1007/s10439-024-03573-2. Epub 2024 Jul 5.
5
Assessment of Right Ventricular Function-a State of the Art.
Curr Heart Fail Rep. 2023 Jun;20(3):194-207. doi: 10.1007/s11897-023-00600-6. Epub 2023 Jun 5.
9
Data-driven computational models of ventricular-arterial hemodynamics in pediatric pulmonary arterial hypertension.
Front Physiol. 2022 Sep 7;13:958734. doi: 10.3389/fphys.2022.958734. eCollection 2022.

本文引用的文献

1
MRI model-based non-invasive differential diagnosis in pulmonary hypertension.
J Biomech. 2014 Sep 22;47(12):2941-7. doi: 10.1016/j.jbiomech.2014.07.024. Epub 2014 Jul 30.
2
Definitions and diagnosis of pulmonary hypertension.
J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D42-50. doi: 10.1016/j.jacc.2013.10.032.
3
Noninvasive estimation of PA pressure, flow, and resistance with CMR imaging: derivation and prospective validation study from the ASPIRE registry.
JACC Cardiovasc Imaging. 2013 Oct;6(10):1036-1047. doi: 10.1016/j.jcmg.2013.01.013. Epub 2013 Jun 13.
4
Pulmonary hypertension: diagnosis and management.
BMJ. 2013 Apr 16;346:f2028. doi: 10.1136/bmj.f2028.
7
Non-invasive estimation of pulmonary vascular resistance with cardiac magnetic resonance.
Eur Heart J. 2011 Oct;32(19):2438-45. doi: 10.1093/eurheartj/ehr173. Epub 2011 May 30.
8
Noninvasive diagnosis of pulmonary hypertension using heart sound analysis.
Comput Biol Med. 2010 Sep;40(9):758-64. doi: 10.1016/j.compbiomed.2010.07.003. Epub 2010 Aug 6.
10
Evaluation of pulmonary artery stiffness in pulmonary hypertension with cardiac magnetic resonance.
JACC Cardiovasc Imaging. 2009 Mar;2(3):286-95. doi: 10.1016/j.jcmg.2008.08.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验