Suppr超能文献

评估机器学习诊断肺动脉高压的准确性:诊断准确性研究的系统评价和荟萃分析

Assessing the precision of machine learning for diagnosing pulmonary arterial hypertension: a systematic review and meta-analysis of diagnostic accuracy studies.

作者信息

Fadilah Akbar, Putri Valerinna Yogibuana Swastika, Puling Imke Maria Del Rosario, Willyanto Sebastian Emmanuel

机构信息

Brawijaya Cardiovascular Research Center, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.

Faculty of Medicine, Brawijaya University, Malang, Indonesia.

出版信息

Front Cardiovasc Med. 2024 Aug 27;11:1422327. doi: 10.3389/fcvm.2024.1422327. eCollection 2024.

Abstract

INTRODUCTION

Pulmonary arterial hypertension (PAH) is a severe cardiovascular condition characterized by pulmonary vascular remodeling, increased resistance to blood flow, and eventual right heart failure. Right heart catheterization (RHC) is the gold standard diagnostic technique, but due to its invasiveness, it poses risks such as vessel and valve injury. In recent years, machine learning (ML) technologies have offered non-invasive alternatives combined with ML for improving the diagnosis of PAH.

OBJECTIVES

The study aimed to evaluate the diagnostic performance of various methods, such as electrocardiography (ECG), echocardiography, blood biomarkers, microRNA, chest x-ray, clinical codes, computed tomography (CT) scan, and magnetic resonance imaging (MRI), combined with ML in diagnosing PAH.

METHODS

The outcomes of interest included sensitivity, specificity, area under the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). This study employed the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool for quality appraisal and STATA V.12.0 for the meta-analysis.

RESULTS

A comprehensive search across six databases resulted in 26 articles for examination. Twelve articles were categorized as low-risk, nine as moderate-risk, and five as high-risk. The overall diagnostic performance analysis demonstrated significant findings, with sensitivity at 81% (95% CI = 0.76-0.85,  < 0.001), specificity at 84% (95% CI = 0.77-0.88,  < 0.001), and an AUC of 89% (95% CI = 0.85-0.91). In the subgroup analysis, echocardiography displayed outstanding results, with a sensitivity value of 83% (95% CI = 0.72-0.91), specificity value of 93% (95% CI = 0.89-0.96), PLR value of 12.4 (95% CI = 6.8-22.9), and DOR value of 70 (95% CI = 23-231). ECG demonstrated excellent accuracy performance, with a sensitivity of 82% (95% CI = 0.80-0.84) and a specificity of 82% (95% CI = 0.78-0.84). Moreover, blood biomarkers exhibited the highest NLR value of 0.50 (95% CI = 0.42-0.59).

CONCLUSION

The implementation of echocardiography and ECG with ML for diagnosing PAH presents a promising alternative to RHC. This approach shows potential, as it achieves excellent diagnostic parameters, offering hope for more accessible and less invasive diagnostic methods.

SYSTEMATIC REVIEW REGISTRATION

PROSPERO (CRD42024496569).

摘要

引言

肺动脉高压(PAH)是一种严重的心血管疾病,其特征为肺血管重塑、血流阻力增加以及最终导致右心衰竭。右心导管检查(RHC)是金标准诊断技术,但由于其侵入性,存在血管和瓣膜损伤等风险。近年来,机器学习(ML)技术提供了结合ML的非侵入性替代方法,以改善PAH的诊断。

目的

本研究旨在评估各种方法,如心电图(ECG)、超声心动图、血液生物标志物、微小RNA、胸部X线、临床编码、计算机断层扫描(CT)和磁共振成像(MRI),结合ML诊断PAH的诊断性能。

方法

感兴趣的结果包括敏感性、特异性、曲线下面积(AUC)、阳性似然比(PLR)、阴性似然比(NLR)和诊断比值比(DOR)。本研究采用诊断准确性研究质量评估-2(QUADAS-2)工具进行质量评估,并使用STATA V.12.0进行荟萃分析。

结果

对六个数据库进行全面检索后,共筛选出26篇文章进行审查。其中12篇文章被归类为低风险,9篇为中度风险,5篇为高风险。总体诊断性能分析显示出显著结果,敏感性为81%(95%CI = 0.76 - 0.85,P < 0.001),特异性为84%(95%CI = 0.77 - 0.88,P < 0.001),AUC为89%(95%CI = 0.85 - 0.91)。在亚组分析中,超声心动图显示出出色的结果,敏感性值为83%(95%CI = 0.72 - 0.91),特异性值为93%(95%CI = 0.89 - 0.96),PLR值为12.4(95%CI = 6.8 - 22.9),DOR值为70(95%CI = 23 - 231)。ECG显示出优异的准确性,敏感性为82%(95%CI = 0.80 - 0.84),特异性为82%(95%CI = 0.78 - 0.84)。此外,血液生物标志物的NLR值最高,为0.50(95%CI = 0.42 - 0.59)。

结论

将超声心动图和ECG与ML结合用于诊断PAH,是RHC的一种有前景的替代方法。这种方法显示出潜力,因为它实现了出色的诊断参数,为更易获得且侵入性更小的诊断方法带来了希望。

系统评价注册

PROSPERO(CRD42024496569)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dff6/11385608/cee008906d0e/fcvm-11-1422327-g001.jpg

相似文献

3
MRI versus CT for the detection of pulmonary nodules: A meta-analysis.
Medicine (Baltimore). 2021 Oct 22;100(42):e27270. doi: 10.1097/MD.0000000000027270.
5
MicroRNA panels as diagnostic biomarkers for colorectal cancer: A systematic review and meta-analysis.
Front Med (Lausanne). 2022 Nov 7;9:915226. doi: 10.3389/fmed.2022.915226. eCollection 2022.

引用本文的文献

本文引用的文献

1
2
Automatic echocardiographic evaluation of the probability of pulmonary hypertension using machine learning.
Pulm Circ. 2023 Aug 4;13(3):e12272. doi: 10.1002/pul2.12272. eCollection 2023 Jul.
3
A claims-based, machine-learning algorithm to identify patients with pulmonary arterial hypertension.
Pulm Circ. 2023 Jun 6;13(2):e12237. doi: 10.1002/pul2.12237. eCollection 2023 Apr.
5
Electrocardiogram Detection of Pulmonary Hypertension Using Deep Learning.
J Card Fail. 2023 Jul;29(7):1017-1028. doi: 10.1016/j.cardfail.2022.12.016. Epub 2023 Jan 24.
6
Construction of a diagnostic signature and immune landscape of pulmonary arterial hypertension.
Front Cardiovasc Med. 2022 Dec 1;9:940894. doi: 10.3389/fcvm.2022.940894. eCollection 2022.
7
A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records.
Int J Cardiol. 2023 Mar 1;374:95-99. doi: 10.1016/j.ijcard.2022.12.016. Epub 2022 Dec 14.
8
2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension.
Eur Heart J. 2022 Oct 11;43(38):3618-3731. doi: 10.1093/eurheartj/ehac237.
10
Deep Learning for Detection of Exercise-Induced Pulmonary Hypertension Using Chest X-Ray Images.
Front Cardiovasc Med. 2022 Jun 15;9:891703. doi: 10.3389/fcvm.2022.891703. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验