Suppr超能文献

还原氧化石墨烯-甲基丙烯酰化明胶杂化水凝胶作为心脏组织工程支架

Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.

作者信息

Shin Su Ryon, Zihlmann Claudio, Akbari Mohsen, Assawes Pribpandao, Cheung Louis, Zhang Kaizhen, Manoharan Vijayan, Zhang Yu Shrike, Yüksekkaya Mehmet, Wan Kai-Tak, Nikkhah Mehdi, Dokmeci Mehmet R, Tang Xiaowu Shirley, Khademhosseini Ali

机构信息

Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA.

Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Small. 2016 Jul;12(27):3677-89. doi: 10.1002/smll.201600178. Epub 2016 Jun 2.

Abstract

Biomaterials currently used in cardiac tissue engineering have certain limitations, such as lack of electrical conductivity and appropriate mechanical properties, which are two parameters playing a key role in regulating cardiac cell behavior. Here, the myocardial tissue constructs are engineered based on reduced graphene oxide (rGO)-incorporated gelatin methacryloyl (GelMA) hybrid hydrogels. The incorporation of rGO into the GelMA matrix significantly enhances the electrical conductivity and mechanical properties of the material. Moreover, cells cultured on composite rGO-GelMA scaffolds exhibit better biological activities such as cell viability, proliferation, and maturation compared to ones cultured on GelMA hydrogels. Cardiomyocytes show stronger contractility and faster spontaneous beating rate on rGO-GelMA hydrogel sheets compared to those on pristine GelMA hydrogels, as well as GO-GelMA hydrogel sheets with similar mechanical property and particle concentration. Our strategy of integrating rGO within a biocompatible hydrogel is expected to be broadly applicable for future biomaterial designs to improve tissue engineering outcomes. The engineered cardiac tissue constructs using rGO incorporated hybrid hydrogels can potentially provide high-fidelity tissue models for drug studies and the investigations of cardiac tissue development and/or disease processes in vitro.

摘要

目前用于心脏组织工程的生物材料存在一定局限性,比如缺乏导电性和合适的机械性能,而这两个参数在调节心脏细胞行为方面起着关键作用。在此,基于掺入还原氧化石墨烯(rGO)的甲基丙烯酰化明胶(GelMA)混合水凝胶构建心肌组织工程支架。将rGO掺入GelMA基质可显著提高材料的导电性和机械性能。此外,与在GelMA水凝胶上培养的细胞相比,在复合rGO - GelMA支架上培养的细胞表现出更好的生物学活性,如细胞活力、增殖和成熟度。与在原始GelMA水凝胶以及具有相似机械性能和颗粒浓度的氧化石墨烯 - GelMA水凝胶片上培养的心肌细胞相比,在rGO - GelMA水凝胶片上培养的心肌细胞表现出更强的收缩性和更快的自发搏动速率。我们将rGO整合到生物相容性水凝胶中的策略有望广泛应用于未来的生物材料设计,以改善组织工程效果。使用掺入rGO的混合水凝胶构建的心脏组织工程支架有可能为药物研究以及体外心脏组织发育和/或疾病过程的研究提供高保真组织模型。

相似文献

1
Reduced Graphene Oxide-GelMA Hybrid Hydrogels as Scaffolds for Cardiac Tissue Engineering.
Small. 2016 Jul;12(27):3677-89. doi: 10.1002/smll.201600178. Epub 2016 Jun 2.
2
Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs.
Acta Biomater. 2016 Sep 1;41:133-46. doi: 10.1016/j.actbio.2016.05.027. Epub 2016 May 20.
3
Nanoparticle-Based Hybrid Scaffolds for Deciphering the Role of Multimodal Cues in Cardiac Tissue Engineering.
ACS Nano. 2019 Nov 26;13(11):12525-12539. doi: 10.1021/acsnano.9b03050. Epub 2019 Oct 28.
5
Hybrid hydrogel-aligned carbon nanotube scaffolds to enhance cardiac differentiation of embryoid bodies.
Acta Biomater. 2016 Feb;31:134-143. doi: 10.1016/j.actbio.2015.11.047. Epub 2015 Nov 24.
6
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.
Biomaterials. 2015 Dec;73:254-71. doi: 10.1016/j.biomaterials.2015.08.045. Epub 2015 Aug 28.
9
Reduced graphene oxide-GelMA-PCL hybrid nanofibers for peripheral nerve regeneration.
J Mater Chem B. 2020 Dec 8;8(46):10593-10601. doi: 10.1039/d0tb00779j.
10
Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration.
J Biomed Mater Res A. 2018 Jan;106(1):201-209. doi: 10.1002/jbm.a.36226. Epub 2017 Sep 28.

引用本文的文献

1
Conductive biological materials for in vitro models: properties and sustainability implications.
In Vitro Model. 2025 Apr 24;4(2):89-110. doi: 10.1007/s44164-025-00088-5. eCollection 2025 Aug.
2
Interaction of cardiomyocytes from CCND2-overexpressing human induced pluripotent stem cells with electrically conductive hydrogels.
RSC Adv. 2025 Jun 24;15(27):21408-21423. doi: 10.1039/d5ra03024b. eCollection 2025 Jun 23.
4
Self-Healing Hydrogels: Mechanisms and Biomedical Applications.
MedComm (2020). 2025 Apr 24;6(5):e70181. doi: 10.1002/mco2.70181. eCollection 2025 May.
5
Engineering functional electroconductive hydrogels for targeted therapy in myocardial infarction repair.
Bioact Mater. 2025 Mar 9;49:172-192. doi: 10.1016/j.bioactmat.2025.01.013. eCollection 2025 Jul.
6
Functionalized conductive polymer composites for tissue engineering and biomedical applications- a mini review.
Front Bioeng Biotechnol. 2025 Feb 4;13:1533944. doi: 10.3389/fbioe.2025.1533944. eCollection 2025.
7
Bioprinted optoelectronically active cardiac tissues.
Sci Adv. 2025 Jan 24;11(4):eadt7210. doi: 10.1126/sciadv.adt7210.
8
Hydrogel-based cardiac patches for myocardial infarction therapy: Recent advances and challenges.
Mater Today Bio. 2024 Nov 7;29:101331. doi: 10.1016/j.mtbio.2024.101331. eCollection 2024 Dec.
9
Graphene derivative based hydrogels in biomedical applications.
J Tissue Eng. 2024 Oct 11;15:20417314241282131. doi: 10.1177/20417314241282131. eCollection 2024 Jan-Dec.
10
Recent advancements of human iPSC derived cardiomyocytes in drug screening and tissue regeneration.
Microphysiol Syst. 2020 Sep;4:2. doi: 10.21037/mps-20-3. Epub 2020 Sep 15.

本文引用的文献

2
Fabrication, Characterization, and Biocompatibility of Polymer Cored Reduced Graphene Oxide Nanofibers.
ACS Appl Mater Interfaces. 2016 Mar 2;8(8):5170-7. doi: 10.1021/acsami.6b00243. Epub 2016 Feb 15.
3
Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films.
Carbohydr Polym. 2015;127:101-9. doi: 10.1016/j.carbpol.2015.03.073. Epub 2015 Mar 30.
4
Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide.
Int J Nanomedicine. 2014 Jul 11;9:3363-73. doi: 10.2147/IJN.S62342. eCollection 2014.
5
Heart regeneration with engineered myocardial tissue.
Annu Rev Biomed Eng. 2014 Jul 11;16:1-28. doi: 10.1146/annurev-bioeng-071812-152344. Epub 2014 Apr 24.
6
Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide.
Adv Mater. 2013 Nov 26;25(44):6385-91. doi: 10.1002/adma.201301082. Epub 2013 Sep 1.
7
Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes.
Biomaterials. 2013 Jul;34(23):5813-20. doi: 10.1016/j.biomaterials.2013.04.026. Epub 2013 May 2.
8
Prospects and challenges of graphene in biomedical applications.
Adv Mater. 2013 Apr 24;25(16):2258-68. doi: 10.1002/adma.201203700. Epub 2013 Mar 13.
9
Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators.
ACS Nano. 2013 Mar 26;7(3):2369-80. doi: 10.1021/nn305559j. Epub 2013 Feb 22.
10
Directed endothelial cell morphogenesis in micropatterned gelatin methacrylate hydrogels.
Biomaterials. 2012 Dec;33(35):9009-18. doi: 10.1016/j.biomaterials.2012.08.068. Epub 2012 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验