Zhang Yihong, Colenso Charlotte K, El Harchi Aziza, Cheng Hongwei, Witchel Harry J, Dempsey Chris E, Hancox Jules C
School of Physiology and Pharmacology and Cardiovascular Research Laboratories, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK.
Biochem Pharmacol. 2016 Aug 1;113:24-35. doi: 10.1016/j.bcp.2016.05.013. Epub 2016 May 30.
The antiarrhythmic drug amiodarone delays cardiac repolarisation through inhibition of hERG-encoded potassium channels responsible for the rapid delayed rectifier potassium current (IKr). This study aimed to elucidate molecular determinants of amiodarone binding to the hERG channel. Whole-cell patch-clamp recordings were made at 37°C of ionic current (IhERG) carried by wild-type (WT) or mutant hERG channels expressed in HEK293 cells. Alanine mutagenesis and ligand docking were used to investigate the roles of pore cavity amino-acid residues in amiodarone binding. Amiodarone inhibited WT outward IhERG tails with a half-maximal inhibitory concentration (IC50) of ∼45nM, whilst inward IhERG tails in a high K(+) external solution ([K(+)]e) of 94mM were blocked with an IC50 of 117.8nM. Amiodarone's inhibitory action was contingent upon channel gating. Alanine-mutagenesis identified multiple residues directly or indirectly involved in amiodarone binding. The IC50 for the S6 aromatic Y652A mutation was increased to ∼20-fold that of WT IhERG, similar to the pore helical mutant S624A (∼22-fold WT control). The IC50 for F656A mutant IhERG was ∼17-fold its corresponding WT control. Computational docking using a MthK-based hERG model differentiated residues likely to interact directly with drug and those whose Ala mutation may affect drug block allosterically. The requirements for amiodarone block of aromatic residues F656 and Y652 within the hERG pore cavity are smaller than for other high affinity IhERG inhibitors, with relative importance to amiodarone binding of the residues investigated being S624A∼Y652A>F656A>V659A>G648A>T623A.
抗心律失常药物胺碘酮通过抑制负责快速延迟整流钾电流(IKr)的hERG编码钾通道来延迟心脏复极化。本研究旨在阐明胺碘酮与hERG通道结合的分子决定因素。在37°C下对HEK293细胞中表达的野生型(WT)或突变型hERG通道所携带的离子电流(IhERG)进行全细胞膜片钳记录。采用丙氨酸诱变和配体对接来研究孔腔氨基酸残基在胺碘酮结合中的作用。胺碘酮抑制WT外向IhERG尾电流的半数最大抑制浓度(IC50)约为45nM,而在94mM的高钾细胞外溶液([K⁺]e)中内向IhERG尾电流被阻断,IC50为117.8nM。胺碘酮的抑制作用取决于通道门控。丙氨酸诱变鉴定出多个直接或间接参与胺碘酮结合的残基。S6芳香族Y652A突变体的IC50增加至WT IhERG的约20倍,类似于孔螺旋突变体S624A(约为WT对照的22倍)。F656A突变体IhERG的IC50约为其相应WT对照的17倍。使用基于MthK的hERG模型进行的计算对接区分了可能与药物直接相互作用的残基以及其丙氨酸突变可能变构影响药物阻断的残基。hERG孔腔内芳香族残基F656和Y652对胺碘酮阻断的要求小于其他高亲和力IhERG抑制剂,所研究残基对胺碘酮结合的相对重要性为S624A∼Y652A>F656A>V659A>G648A>T623A。