Institute of Theoretical Physics and Astrophysics, University of Kiel, 24098 Kiel, Germany.
Nat Commun. 2014 Jun 4;5:4030. doi: 10.1038/ncomms5030.
Skyrmions in magnetic materials offer attractive perspectives for future spintronic applications since they are topologically stabilized spin structures on the nanometre scale, which can be manipulated with electric current densities that are by orders of magnitude lower than those required for moving domain walls. So far, they were restricted to bulk magnets with a particular chiral crystal symmetry greatly limiting the number of available systems and the adjustability of their properties. Recently, it has been experimentally discovered that magnetic skyrmion phases can also occur in ultra-thin transition metal films at surfaces. Here we present an understanding of skyrmions in such systems based on first-principles electronic structure theory. We demonstrate that the properties of magnetic skyrmions at transition metal interfaces such as their diameter and their stability can be tuned by the structure and composition of the interface and that a description beyond a micromagnetic model is required in such systems.
在磁性材料中的 skyrmions 为未来的自旋电子学应用提供了有吸引力的前景,因为它们是纳米尺度上拓扑稳定的自旋结构,可以通过电流密度来操纵,其电流密度比移动畴壁所需的电流密度低几个数量级。到目前为止,它们仅限于具有特殊手性晶体对称性的体磁铁,这极大地限制了可用系统的数量和其性质的可调节性。最近,实验上已经发现,磁性 skyrmion 相也可以在表面的超薄过渡金属薄膜中出现。在这里,我们基于第一性原理电子结构理论,对这类系统中的 skyrmions 进行了研究。我们证明了过渡金属界面上的磁性 skyrmion 的性质,例如它们的直径和稳定性,可以通过界面的结构和组成来调节,并且在这类系统中需要超越微磁模型的描述。