Suppr超能文献

具有增强的可见光-近红外区域光电化学水分解效率的等离子体 Pd 纳米粒子和等离子体 Pd 纳米棒修饰的 BiVO4 电极。

Plasmonic Pd Nanoparticle- and Plasmonic Pd Nanorod-Decorated BiVO4 Electrodes with Enhanced Photoelectrochemical Water Splitting Efficiency Across Visible-NIR Region.

机构信息

Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.

University of Chinese Academy of Sciences, Beijing, 100039, China.

出版信息

Nanoscale Res Lett. 2016 Dec;11(1):283. doi: 10.1186/s11671-016-1492-8. Epub 2016 Jun 4.

Abstract

The photoelectrochemical (PEC) water splitting performance of BiVO4 is partially hindered by insufficient photoresponse in the spectral region with energy below the band gap. Here, we demonstrate that the PEC water splitting efficiency of BiVO4 electrodes can be effectively enhanced by decorating Pd nanoparticles (NPs) and nanorods (NRs). The results indicate that the Pd NPs and NRs with different surface plasmon resonance (SPR) features delivered an enhanced PEC water splitting performance in the visible and near-infrared (NIR) regions, respectively. Considering that there is barely no absorption overlap between Pd nanostructures and BiVO4 and the finite-difference time domain (FDTD) simulation indicating there are substantial energetic hot electrons in the vicinity of Pd nanostructures, the enhanced PEC performance of Pd NP-decorated BiVO4 and Pd NR-decorated BiVO4 could both benefit from the hot electron injection mechanism instead of the plasmon resonance energy transfer process. Moreover, a combination of Pd NPs and NRs decorated on the BiVO4 electrodes leads to a broad-band enhancement across visible-NIR region.

摘要

BIVO4 的光电化学 (PEC) 水分解性能部分受到能带隙以下能量光谱区域内光响应不足的限制。在这里,我们证明了通过修饰 Pd 纳米粒子 (NPs) 和纳米棒 (NRs) 可以有效提高 BIVO4 电极的 PEC 水分解效率。结果表明,具有不同表面等离子体共振 (SPR) 特征的 Pd NPs 和 NRs 分别在可见光和近红外 (NIR) 区域提供了增强的 PEC 水分解性能。考虑到 Pd 纳米结构与 BIVO4 之间几乎没有吸收重叠,并且有限差分时域 (FDTD) 模拟表明在 Pd 纳米结构附近存在大量高能热电子,Pd NP 修饰的 BIVO4 和 Pd NR 修饰的 BIVO4 的增强 PEC 性能都可能受益于热电子注入机制,而不是等离子体共振能量转移过程。此外,在 BIVO4 电极上修饰 Pd NPs 和 NRs 的组合导致在可见-NIR 区域内的宽带增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e36/4893044/b00796bb9055/11671_2016_1492_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验