Liu Yuting, Xu Zhen, Yin Min, Fan Haowen, Cheng Weijie, Lu Linfeng, Song Ye, Ma Jing, Zhu Xufei
Key Laboratory of Soft Chemistry and Functional Materials of Education Ministry, Nanjing University of Science and Technology, Nanjing, 210094, China.
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
Nanoscale Res Lett. 2015 Dec;10(1):374. doi: 10.1186/s11671-015-1077-y. Epub 2015 Sep 29.
The short lifetime of photogenerated charge carriers of hematite (α-Fe2O3) thin films strongly hindered the PEC performances. Herein, α-Fe2O3 thin films with surface nanowire were synthesized by electrodeposition and post annealing method for photoelectrocatalytic (PEC) water splitting. The thickness of the α-Fe2O3 films can be precisely controlled by adjusting the duration of the electrodeposition. The Au nanoparticles (NPs) and Al2O3 shell by atom layer deposition were further introduced to modify the photoelectrodes. Different constructions were made with different deposition orders of Au and Al2O3 on Fe2O3 films. The Fe2O3-Au-Al2O3 construction shows the best PEC performance with 1.78 times enhancement by localized surface plasmon resonance (LSPR) of NPs in conjunction with surface passivation of Al2O3 shells. Numerical simulation was carried out to investigate the promotion mechanisms. The high PEC performance for Fe2O3-Au-Al2O3 construction electrode could be attributed to the Al2O3 intensified LSPR, effective surface passivation by Al2O3 coating, and the efficient charge transfer due to the Fe2O3-Au Schottky junctions.
赤铁矿(α-Fe2O3)薄膜光生载流子的短寿命严重阻碍了光电化学(PEC)性能。在此,通过电沉积和后退火方法合成了具有表面纳米线的α-Fe2O3薄膜用于光电催化(PEC)水分解。α-Fe2O3薄膜的厚度可以通过调节电沉积的持续时间精确控制。通过原子层沉积进一步引入金纳米颗粒(NPs)和Al2O3壳层来修饰光电极。在Fe2O3薄膜上以不同的金和Al2O3沉积顺序构建了不同的结构。Fe2O3-Au-Al2O3结构表现出最佳的PEC性能,通过NPs的局域表面等离子体共振(LSPR)结合Al2O3壳层的表面钝化,性能提高了1.78倍。进行了数值模拟以研究其促进机制。Fe2O3-Au-Al2O3结构电极的高PEC性能可归因于Al2O3增强的LSPR、Al2O3涂层有效的表面钝化以及Fe2O3-Au肖特基结导致的高效电荷转移。