López de Maturana E, Picornell A, Masson-Lecomte A, Kogevinas M, Márquez M, Carrato A, Tardón A, Lloreta J, García-Closas M, Silverman D, Rothman N, Chanock S, Real F X, Goddard M E, Malats N
Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), C/Melchor Fernández, Almagro, 3, 28029, Madrid, Spain.
Centre for Research in Environmental Epidemiology (CREAL), Parc de Salut Mar, Barcelona, Spain.
BMC Cancer. 2016 Jun 3;16:351. doi: 10.1186/s12885-016-2361-7.
We adapted Bayesian statistical learning strategies to the prognosis field to investigate if genome-wide common SNP improve the prediction ability of clinico-pathological prognosticators and applied it to non-muscle invasive bladder cancer (NMIBC) patients.
Adapted Bayesian sequential threshold models in combination with LASSO were applied to consider the time-to-event and the censoring nature of data. We studied 822 NMIBC patients followed-up >10 years. The study outcomes were time-to-first-recurrence and time-to-progression. The predictive ability of the models including up to 171,304 SNP and/or 6 clinico-pathological prognosticators was evaluated using AUC-ROC and determination coefficient.
Clinico-pathological prognosticators explained a larger proportion of the time-to-first-recurrence (3.1 %) and time-to-progression (5.4 %) phenotypic variances than SNPs (1 and 0.01 %, respectively). Adding SNPs to the clinico-pathological-parameters model slightly improved the prediction of time-to-first-recurrence (up to 4 %). The prediction of time-to-progression using both clinico-pathological prognosticators and SNP did not improve. Heritability (ĥ (2)) of both outcomes was <1 % in NMIBC.
We adapted a Bayesian statistical learning method to deal with a large number of parameters in prognostic studies. Common SNPs showed a limited role in predicting NMIBC outcomes yielding a very low heritability for both outcomes. We report for the first time a heritability estimate for a disease outcome. Our method can be extended to other disease models.
我们将贝叶斯统计学习策略应用于预后领域,以研究全基因组常见单核苷酸多态性(SNP)是否能提高临床病理预后指标的预测能力,并将其应用于非肌层浸润性膀胱癌(NMIBC)患者。
采用结合套索(LASSO)的适应性贝叶斯序贯阈值模型来考虑事件发生时间和数据的删失性质。我们研究了822例随访时间超过10年的NMIBC患者。研究结局为首次复发时间和进展时间。使用曲线下面积(AUC-ROC)和决定系数评估包含多达171,304个SNP和/或6个临床病理预后指标的模型的预测能力。
与SNP(分别为1%和0.01%)相比,临床病理预后指标解释了更大比例的首次复发时间(3.1%)和进展时间(5.4%)的表型变异。在临床病理参数模型中加入SNP略微改善了首次复发时间的预测(提高至4%)。使用临床病理预后指标和SNP对进展时间的预测并未改善。NMIBC中两种结局的遗传度(ĥ (2))均<1%。
我们采用了一种贝叶斯统计学习方法来处理预后研究中的大量参数。常见SNP在预测NMIBC结局方面作用有限,两种结局的遗传度都非常低。我们首次报告了疾病结局的遗传度估计值。我们的方法可扩展到其他疾病模型。