Suppr超能文献

使用人工智能预测非肌层浸润性膀胱癌的预后:一项使用APPRAISE-AI的系统评价

Predicting non-muscle invasive bladder cancer outcomes using artificial intelligence: a systematic review using APPRAISE-AI.

作者信息

Kwong Jethro C C, Wu Jeremy, Malik Shamir, Khondker Adree, Gupta Naveen, Bodnariuc Nicole, Narayana Krishnateja, Malik Mikail, van der Kwast Theodorus H, Johnson Alistair E W, Zlotta Alexandre R, Kulkarni Girish S

机构信息

Division of Urology, Department of Surgery, University of Toronto, Toronto, ON, Canada.

Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON, Canada.

出版信息

NPJ Digit Med. 2024 Apr 18;7(1):98. doi: 10.1038/s41746-024-01088-7.

Abstract

Accurate prediction of recurrence and progression in non-muscle invasive bladder cancer (NMIBC) is essential to inform management and eligibility for clinical trials. Despite substantial interest in developing artificial intelligence (AI) applications in NMIBC, their clinical readiness remains unclear. This systematic review aimed to critically appraise AI studies predicting NMIBC outcomes, and to identify common methodological and reporting pitfalls. MEDLINE, EMBASE, Web of Science, and Scopus were searched from inception to February 5th, 2024 for AI studies predicting NMIBC recurrence or progression. APPRAISE-AI was used to assess methodological and reporting quality of these studies. Performance between AI and non-AI approaches included within these studies were compared. A total of 15 studies (five on recurrence, four on progression, and six on both) were included. All studies were retrospective, with a median follow-up of 71 months (IQR 32-93) and median cohort size of 125 (IQR 93-309). Most studies were low quality, with only one classified as high quality. While AI models generally outperformed non-AI approaches with respect to accuracy, c-index, sensitivity, and specificity, this margin of benefit varied with study quality (median absolute performance difference was 10 for low, 22 for moderate, and 4 for high quality studies). Common pitfalls included dataset limitations, heterogeneous outcome definitions, methodological flaws, suboptimal model evaluation, and reproducibility issues. Recommendations to address these challenges are proposed. These findings emphasise the need for collaborative efforts between urological and AI communities paired with rigorous methodologies to develop higher quality models, enabling AI to reach its potential in enhancing NMIBC care.

摘要

准确预测非肌肉浸润性膀胱癌(NMIBC)的复发和进展对于指导治疗管理及临床试验资格至关重要。尽管人们对在NMIBC中开发人工智能(AI)应用有着浓厚兴趣,但其临床应用准备情况仍不明确。本系统评价旨在严格评估预测NMIBC结果的AI研究,并识别常见的方法学和报告缺陷。从数据库建立至2024年2月5日,对MEDLINE、EMBASE、科学引文索引和Scopus进行检索,以查找预测NMIBC复发或进展的AI研究。采用APPRAISE-AI评估这些研究的方法学和报告质量。比较了这些研究中AI方法与非AI方法的性能。共纳入15项研究(5项关于复发,4项关于进展,6项关于两者)。所有研究均为回顾性研究,中位随访时间为71个月(四分位间距32 - 93),中位队列规模为125(四分位间距93 - 309)。大多数研究质量较低,只有一项被归类为高质量。虽然AI模型在准确性、c指数、敏感性和特异性方面通常优于非AI方法,但这种优势程度因研究质量而异(低质量研究的中位绝对性能差异为10,中等质量研究为22,高质量研究为4)。常见缺陷包括数据集局限性、结果定义异质性、方法学缺陷以及模型评估欠佳和可重复性问题。针对这些挑战提出了相应建议。这些发现强调了泌尿外科和AI领域之间需要共同努力,并采用严谨的方法来开发更高质量的模型,以使AI在改善NMIBC护理方面发挥其潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8638/11026453/61193c0fc3b0/41746_2024_1088_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验