Salamin Olivier, De Angelis Sara, Tissot Jean-Daniel, Saugy Martial, Leuenberger Nicolas
Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
Transfusion interrégionale CRS, site d'Epalinges, Epalinges, Switzerland.
Transfus Med Rev. 2016 Jul;30(3):109-15. doi: 10.1016/j.tmrv.2016.05.007. Epub 2016 May 21.
Despite being prohibited by the World Anti-Doping Agency, blood doping through erythropoietin injection or blood transfusion is frequently used by athletes to increase oxygen delivery to muscles and enhance performance. In contrast with allogeneic blood transfusion and erythropoietic stimulants, there is presently no direct method of detection for autologous blood transfusion (ABT) doping. Blood reinfusion is currently monitored with individual follow-up of hematological variables via the athlete biological passport, which requires further improvement. Microdosage is undetectable, and suspicious profiles in athletes are often attributed to exposure to altitude, heat stress, or illness. Additional indirect biomarkers may increase the sensitivity and specificity of the longitudinal approach. The emergence of "-omics" strategies provides new opportunities to discover biomarkers for the indirect detection of ABT. With the development of direct quantitative methods, transcriptomics based on microRNA or messenger RNA expression is a promising approach. Because blood donation and blood reinfusion alter iron metabolism, quantification of proteins involved in metal metabolism, such as hepcidin, may be applied in an "ironomics" strategy to improve the detection of ABT. As red blood cell (RBC) storage triggers changes in membrane proteins, proteomic methods have the potential to identify the presence of stored RBCs in blood. Alternatively, urine matrix can be used for the quantification of the plasticizer di(2-ethyhexyl)phthalate and its metabolites that originate from blood storage bags, suggesting recent blood transfusion, and have an important degree of sensitivity and specificity. This review proposes that various indirect biomarkers should be applied in combination with mathematical approaches for longitudinal monitoring aimed at improving ABT detection.
尽管被世界反兴奋剂机构禁止,但通过注射促红细胞生成素或输血进行血液兴奋剂使用的情况在运动员中屡见不鲜,他们借此增加氧气输送到肌肉的量并提高成绩。与异体输血和促红细胞生成兴奋剂不同,目前尚无直接检测自体输血(ABT)兴奋剂使用的方法。目前通过运动员生物护照对血液回输进行个体血液学变量的跟踪监测,这还需要进一步改进。微量使用无法被检测到,运动员中可疑的血液学指标往往被归因于暴露于高原环境、热应激或疾病。其他间接生物标志物可能会提高纵向监测方法的敏感性和特异性。“组学”策略的出现为发现用于间接检测ABT的生物标志物提供了新机会。随着直接定量方法的发展,基于微小RNA或信使RNA表达的转录组学是一种很有前景的方法。由于献血和血液回输会改变铁代谢,对参与金属代谢的蛋白质(如铁调素)进行定量,可能会应用于“铁组学”策略以改进ABT的检测。由于红细胞(RBC)储存会引发膜蛋白的变化,蛋白质组学方法有潜力识别血液中储存红细胞的存在。另外,尿液基质可用于定量源自血袋的增塑剂邻苯二甲酸二(2-乙基己基)酯及其代谢物,这表明近期有输血情况,且具有重要程度的敏感性和特异性。本综述提出,应将各种间接生物标志物与数学方法结合应用于纵向监测,以改进ABT检测。