Galazka Jonathan M, Klocko Andrew D, Uesaka Miki, Honda Shinji, Selker Eric U, Freitag Michael
Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, USA;
Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA;
Genome Res. 2016 Aug;26(8):1069-80. doi: 10.1101/gr.203182.115. Epub 2016 Jun 3.
Eukaryotic genomes are organized into chromatin domains with three-dimensional arrangements that presumably result from interactions between the chromatin constituents-proteins, DNA, and RNA-within the physical constraints of the nucleus. We used chromosome conformation capture (3C) followed by high-throughput sequencing (Hi-C) with wild-type and mutant strains of Neurospora crassa to gain insight into the role of heterochromatin in the organization and function of the genome. We tested the role of three proteins thought to be important for establishment of heterochromatin, namely, the histone H3 lysine 9 methyltransferase DIM-5, Heterochromatin Protein 1 (HP1), which specifically binds to the product of DIM-5 (trimethylated H3 lysine 9 [H3K9me3]), and DIM-3 (importin alpha), which is involved in DIM-5 localization. The average genome configuration of the wild-type strain revealed strong intra- and inter-chromosomal associations between both constitutive and facultative heterochromatic domains, with the strongest interactions among the centromeres, subtelomeres, and interspersed heterochromatin. Surprisingly, loss of either H3K9me3 or HP1 had only mild effects on heterochromatin compaction, whereas dim-3 caused more drastic changes, specifically decreasing interactions between constitutive heterochromatic domains. Thus, associations between heterochromatic regions are a major component of the chromosome conformation in Neurospora, but two widely studied key heterochromatin proteins are not necessary, implying that undefined protein factors play key roles in maintaining overall chromosome organization.
真核生物基因组被组织成具有三维排列的染色质结构域,这种排列大概是染色质成分(蛋白质、DNA和RNA)在细胞核的物理限制内相互作用的结果。我们使用染色体构象捕获技术(3C),随后对粗糙脉孢菌的野生型和突变菌株进行高通量测序(Hi-C),以深入了解异染色质在基因组组织和功能中的作用。我们测试了三种被认为对异染色质形成很重要的蛋白质的作用,即组蛋白H3赖氨酸9甲基转移酶DIM-5、特异性结合DIM-5产物(三甲基化H3赖氨酸9 [H3K9me3])的异染色质蛋白1(HP1),以及参与DIM-5定位的DIM-3(输入蛋白α)。野生型菌株的平均基因组构型显示,组成型和兼性异染色质结构域之间存在强烈的染色体内和染色体间关联,着丝粒、亚端粒和散布的异染色质之间的相互作用最强。令人惊讶的是,H3K9me3或HP1的缺失对异染色质压缩只有轻微影响,而dim-3则引起了更剧烈的变化,特别是减少了组成型异染色质结构域之间的相互作用。因此,异染色质区域之间的关联是粗糙脉孢菌染色体构象的主要组成部分,但两种广泛研究的关键异染色质蛋白并非必需,这意味着未定义的蛋白质因子在维持整体染色体组织中起关键作用。