Suppr超能文献

可视化视黄酸形态发生素梯度。

Visualizing retinoic acid morphogen gradients.

作者信息

Schilling T F, Sosnik J, Nie Q

机构信息

University of California, Irvine, CA, United States.

出版信息

Methods Cell Biol. 2016;133:139-63. doi: 10.1016/bs.mcb.2016.03.003. Epub 2016 Apr 18.

Abstract

Morphogens were originally defined as secreted signaling molecules that diffuse from local sources to form concentration gradients, which specify multiple cell fates. More recently morphogen gradients have been shown to incorporate a range of mechanisms including short-range signal activation, transcriptional/translational feedback, and temporal windows of target gene induction. Many critical cell-cell signals implicated in both embryonic development and disease, such as Wnt, fibroblast growth factor (Fgf), hedgehog (Hh), transforming growth factor beta (TGFb), and retinoic acid (RA), are thought to act as morphogens, but key information on signal propagation and ligand distribution has been lacking for most. The zebrafish provides unique advantages for genetics and imaging to address gradients during early embryonic stages when morphogens help establish major body axes. This has been particularly informative for RA, where RA response elements (RAREs) driving fluorescent reporters as well as Fluorescence Resonance Energy Transfer (FRET) reporters of receptor binding have provided evidence for gradients, as well as regulatory mechanisms that attenuate noise and enhance gradient robustness in vivo. Here we summarize available tools in zebrafish and discuss their utility for studying dynamic regulation of RA morphogen gradients, through combined experimental and computational approaches.

摘要

形态发生素最初被定义为从局部来源扩散形成浓度梯度的分泌信号分子,这些梯度决定了多种细胞命运。最近研究表明,形态发生素梯度包含一系列机制,包括短程信号激活、转录/翻译反馈以及靶基因诱导的时间窗口。许多在胚胎发育和疾病中起关键作用的细胞间信号,如Wnt、成纤维细胞生长因子(Fgf)、刺猬因子(Hh)、转化生长因子β(TGFb)和视黄酸(RA),都被认为可作为形态发生素,但大多数信号的关键信息,如信号传播和配体分布,一直缺乏。斑马鱼在遗传学和成像方面具有独特优势,可用于研究胚胎早期阶段形态发生素帮助建立主要身体轴时的梯度。这对于RA尤其具有启发性,其中驱动荧光报告基因的RA反应元件(RAREs)以及受体结合的荧光共振能量转移(FRET)报告基因提供了梯度证据,以及在体内减弱噪声并增强梯度稳健性的调控机制。在这里,我们总结了斑马鱼中可用的工具,并通过结合实验和计算方法讨论它们在研究RA形态发生素梯度动态调控方面的实用性。

相似文献

1
Visualizing retinoic acid morphogen gradients.
Methods Cell Biol. 2016;133:139-63. doi: 10.1016/bs.mcb.2016.03.003. Epub 2016 Apr 18.
2
Visualization of an endogenous retinoic acid gradient across embryonic development.
Nature. 2013 Apr 18;496(7445):363-6. doi: 10.1038/nature12037. Epub 2013 Apr 7.
5
Dynamics and precision in retinoic acid morphogen gradients.
Curr Opin Genet Dev. 2012 Dec;22(6):562-9. doi: 10.1016/j.gde.2012.11.012. Epub 2012 Dec 19.
6
Transgenic retinoic acid sensor lines in zebrafish indicate regions of available embryonic retinoic acid.
Dev Dyn. 2013 Aug;242(8):989-1000. doi: 10.1002/dvdy.23987. Epub 2013 Jun 18.
7
Travelling gradients in interacting morphogen systems.
Math Biosci. 2007 Sep;209(1):30-50. doi: 10.1016/j.mbs.2007.01.006. Epub 2007 Feb 8.
10
Combinatorial roles for zebrafish retinoic acid receptors in the hindbrain, limbs and pharyngeal arches.
Dev Biol. 2009 Jan 1;325(1):60-70. doi: 10.1016/j.ydbio.2008.09.022. Epub 2008 Oct 2.

引用本文的文献

1
Reducing education inequalities through cloud-enabled live-cell biotechnology.
Trends Biotechnol. 2025 Jan;43(1):43-60. doi: 10.1016/j.tibtech.2024.07.015. Epub 2024 Aug 28.
3
Zbtb16 mediates a switch between Fgf signalling regimes in the developing hindbrain.
Development. 2023 Sep 15;150(18). doi: 10.1242/dev.201319. Epub 2023 Sep 14.
4
Mechanisms of Feedback Regulation of Vitamin A Metabolism.
Nutrients. 2022 Mar 21;14(6):1312. doi: 10.3390/nu14061312.
5
Mandibulofacial Dysostosis Attributed to a Recessive Mutation of in Hereford Cattle.
Genes (Basel). 2020 Oct 22;11(11):1246. doi: 10.3390/genes11111246.
6
Mesoderm patterning by a dynamic gradient of retinoic acid signalling.
Philos Trans R Soc Lond B Biol Sci. 2020 Oct 12;375(1809):20190556. doi: 10.1098/rstb.2019.0556. Epub 2020 Aug 24.
8
Recent insights on the role and regulation of retinoic acid signaling during epicardial development.
Genesis. 2019 Jul;57(7-8):e23303. doi: 10.1002/dvg.23303. Epub 2019 May 8.
9
Hindbrain induction and patterning during early vertebrate development.
Cell Mol Life Sci. 2019 Mar;76(5):941-960. doi: 10.1007/s00018-018-2974-x. Epub 2018 Dec 5.
10
Establishing sharp and homogeneous segments in the hindbrain.
F1000Res. 2018 Aug 13;7. doi: 10.12688/f1000research.15391.1. eCollection 2018.

本文引用的文献

2
CDX4 and retinoic acid interact to position the hindbrain-spinal cord transition.
Dev Biol. 2016 Feb 15;410(2):178-189. doi: 10.1016/j.ydbio.2015.12.025. Epub 2016 Jan 6.
3
Morphogen rules: design principles of gradient-mediated embryo patterning.
Development. 2015 Dec 1;142(23):3996-4009. doi: 10.1242/dev.129452.
4
Signaling filopodia in vertebrate embryonic development.
Cell Mol Life Sci. 2016 Mar;73(5):961-74. doi: 10.1007/s00018-015-2097-6. Epub 2015 Nov 30.
5
A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain.
Dev Cell. 2015 Oct 26;35(2):175-85. doi: 10.1016/j.devcel.2015.09.014.
6
Mechanisms of FGF gradient formation during embryogenesis.
Semin Cell Dev Biol. 2016 May;53:94-100. doi: 10.1016/j.semcdb.2015.10.004. Epub 2015 Oct 8.
7
Models for patterning primary embryonic body axes: The role of space and time.
Semin Cell Dev Biol. 2015 Jun;42:103-17. doi: 10.1016/j.semcdb.2015.06.005. Epub 2015 Jun 28.
8
Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes.
Semin Cell Dev Biol. 2015 Jun;42:118-33. doi: 10.1016/j.semcdb.2015.06.003. Epub 2015 Jun 27.
9
Cell segregation in the vertebrate hindbrain: a matter of boundaries.
Cell Mol Life Sci. 2015 Oct;72(19):3721-30. doi: 10.1007/s00018-015-1953-8. Epub 2015 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验