Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, McCullough Building 343, Stanford, California 94305, USA.
Smart Design of Materials and Process Research-Domain, Toyota Central R&D Laboratories, Inc., 41-1 Nagakute, Aichi 480-1192, Japan.
Nat Commun. 2016 Jun 6;7:11801. doi: 10.1038/ncomms11801.
Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel-zinc batteries with good power rate (20 mA cm(-2), 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits.
便携式电源和电网规模储能都需要兼具高能量密度和低成本的电池。由于锌的低成本和高电荷存储容量,锌金属电池系统具有吸引力。然而,在反复的电镀和剥离过程中,锌金属阳极会出现众所周知的问题,即锌枝晶形成,导致内部短路。在这里,我们展示了一种背面电镀配置,可实现锌金属电池的长期循环而不会短路。我们展示了具有良好功率率(我们的阳极为 20 mA cm(-2),20 C 率)的镍锌电池的 800 次稳定循环。这种背面电镀方法不仅可以应用于锌金属系统,还可以应用于其他遭受内部短路的基于金属的电极。