Suppr超能文献

校正回归模型中预测变量的二项式测量误差及其在亚硫酸氢盐测序分析DNA甲基化率中的应用

Correcting for binomial measurement error in predictors in regression with application to analysis of DNA methylation rates by bisulfite sequencing.

作者信息

Buonaccorsi John, Prochenka Agnieszka, Thoresen Magne, Ploski Rafal

机构信息

Department of Mathematics and Statistics, University of Massachusetts- Amherst, Amherst, MA, U.S.A.

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland.

出版信息

Stat Med. 2016 Sep 30;35(22):3987-4007. doi: 10.1002/sim.6988. Epub 2016 Jun 6.

Abstract

Motivated by a genetic application, this paper addresses the problem of fitting regression models when the predictor is a proportion measured with error. While the problem of dealing with additive measurement error in fitting regression models has been extensively studied, the problem where the additive error is of a binomial nature has not been addressed. The measurement errors here are heteroscedastic for two reasons; dependence on the underlying true value and changing sampling effort over observations. While some of the previously developed methods for treating additive measurement error with heteroscedasticity can be used in this setting, other methods need modification. A new version of simulation extrapolation is developed, and we also explore a variation on the standard regression calibration method that uses a beta-binomial model based on the fact that the true value is a proportion. Although most of the methods introduced here can be used for fitting non-linear models, this paper will focus primarily on their use in fitting a linear model. While previous work has focused mainly on estimation of the coefficients, we will, with motivation from our example, also examine estimation of the variance around the regression line. In addressing these problems, we also discuss the appropriate manner in which to bootstrap for both inferences and bias assessment. The various methods are compared via simulation, and the results are illustrated using our motivating data, for which the goal is to relate the methylation rate of a blood sample to the age of the individual providing the sample. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

受一个基因应用的启发,本文探讨了在预测变量为有测量误差的比例时拟合回归模型的问题。虽然在拟合回归模型时处理加性测量误差的问题已得到广泛研究,但加性误差具有二项式性质的问题尚未得到解决。这里的测量误差是异方差的,原因有两个:依赖于潜在的真实值以及观测中抽样努力的变化。虽然一些先前开发的处理具有异方差性的加性测量误差的方法可用于此设置,但其他方法需要修改。我们开发了一个新版本的模拟外推法,并且基于真实值是一个比例这一事实,我们还探索了标准回归校准方法的一种变体,该变体使用贝塔 - 二项式模型。虽然本文介绍的大多数方法可用于拟合非线性模型,但本文将主要关注它们在拟合线性模型中的应用。虽然先前的工作主要集中在系数估计上,但受我们的示例启发,我们还将研究回归线周围方差的估计。在解决这些问题时,我们还讨论了用于推断和偏差评估的自举法的适当方式。通过模拟对各种方法进行了比较,并使用我们的激励数据说明了结果,该数据的目标是将血液样本的甲基化率与提供样本的个体的年龄联系起来。版权所有© 2016约翰威立父子有限公司。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验