Parveen Nabila, Moodie Erica, Brenner Bluma
Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada.
Lady Devis Research Institute, Montreal, Quebec, Canada.
Stat Med. 2017 Jul 30;36(17):2786-2800. doi: 10.1002/sim.7289. Epub 2017 Apr 9.
There are many settings in which the distribution of error in a mismeasured covariate varies with the value of another covariate. Take, for example, the case of HIV phylogenetic cluster size, large values of which are an indication of rapid HIV transmission. Researchers wish to find behavioral correlates of HIV phylogenetic cluster size; however, the distribution of its measurement error depends on the correctly measured variable, HIV status, and does not have a mean of zero. Further, it is not feasible to obtain validation data or repeated measurements. We propose an extension of simulation-extrapolation, an estimation technique for bias reduction in the presence of measurement error that does not require validation data and can accommodate errors whose distribution depends on other, error-free covariates. The proposed extension performs well in simulation, typically exhibiting less bias and variability than either regression calibration or multiple imputation for measurement error. We apply the proposed method to data from the province of Quebec in Canada to examine the association between HIV phylogenetic cluster size and the number of reported sex partners. Copyright © 2017 John Wiley & Sons, Ltd.
在许多情况下,测量错误的协变量中的误差分布会随着另一个协变量的值而变化。例如,以HIV系统发育簇大小为例,其较大的值表明HIV传播迅速。研究人员希望找到HIV系统发育簇大小的行为相关因素;然而,其测量误差的分布取决于正确测量的变量——HIV状态,且均值不为零。此外,获取验证数据或重复测量并不可行。我们提出了模拟外推法的一种扩展,这是一种在存在测量误差时减少偏差的估计技术,它不需要验证数据,并且可以处理误差分布取决于其他无误差协变量的情况。所提出的扩展在模拟中表现良好,通常比回归校准或测量误差的多重填补表现出更小的偏差和变异性。我们将所提出的方法应用于加拿大魁北克省的数据,以检验HIV系统发育簇大小与报告的性伴侣数量之间的关联。版权所有© 2017约翰·威利父子有限公司。