Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, and CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science & Technology of China, Hefei, 230026, P.R. China.
School of Physics, Nankai University, Tianjin, 300071, P.R. China.
Angew Chem Int Ed Engl. 2016 Jul 4;55(28):8018-22. doi: 10.1002/anie.201603406. Epub 2016 Jun 6.
One-dimensional (1D) transition metal oxide (TMO) nanostructures are actively pursued in spintronic devices owing to their nontrivial d electron magnetism and confined electron transport pathways. However, for TMOs, the realization of 1D structures with long-range magnetic order to achieve a sensitive magnetoelectric response near room temperature has been a longstanding challenge. Herein, we exploit a chemical hydric effect to regulate the spin structure of 1D V-V atomic chains in monoclinic VO2 nanowires. Hydrogen treatment introduced V(3+) (3d(2) ) ions into the 1D zigzag V-V chains, triggering the formation of ferromagnetically coupled V(3+) -V(4+) dimers to produce 1D superparamagnetic chains and achieve large room-temperature negative magnetoresistance (-23.9 %, 300 K, 0.5 T). This approach offers new opportunities to regulate the spin structure of 1D nanostructures to control the intrinsic magnetoelectric properties of spintronic materials.
一维(1D)过渡金属氧化物(TMO)纳米结构由于其非平凡的 d 电子磁性和受限的电子输运途径,在自旋电子器件中受到了广泛关注。然而,对于 TMO 来说,实现具有长程磁有序的 1D 结构以在室温附近实现灵敏的磁电响应一直是一个长期存在的挑战。在这里,我们利用化学水合作用来调节单斜 VO2 纳米线中 1D V-V 原子链的自旋结构。氢处理将 V(3+)(3d(2))离子引入到 1D 之字形 V-V 链中,引发铁磁耦合的 V(3+) -V(4+)二聚体的形成,从而产生 1D 超顺磁链,并实现了大的室温负磁阻(-23.9%,300 K,0.5 T)。这种方法为调节 1D 纳米结构的自旋结构以控制自旋电子材料的固有磁电特性提供了新的机会。