Zhu Jiajun, Zhao Heyun, Hu Wanbiao
Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Researchon Photoelectric, School of Materials and Energy, Yunnan University, Kunming, 650091, China.
Electron Microscopy Center, Yunnan University, Kunming 650091, P. R. China.
Phys Chem Chem Phys. 2023 Jul 19;25(28):18926-18931. doi: 10.1039/d3cp01579c.
The existence of one-dimensional (1D) ferroelectricity and ferromagnetism provides an opportunity to expand the field of research in low-dimensional magnetoelectric and multiferroics and explore the future development of high-performance nanometer devices. Here, we predict a novel 1D ferroelectric hex-GeS nanowire with coexisting ferromagnetism. The electric polarization comes from the atomic displacements between Ge and S atoms, and it exhibits a far-higher than room temperature ferroelectric Curie temperature Ec = 830 K. The ferromagnetism, stemming from the Stoner instability, can be tuned by hole doping and maintained over a wide range of hole concentrations. Additionally, an indirect-direct-indirect band gap transition can be achieved strain engineering and the bonding nature of the near-band-edge electronic orbitals revealed this transition mechanism. These results offer a platform to investigate 1D ferroelectric and ferromagnetic systems, and the presented hex-GeS nanowire demonstrates the potential for high-performance electronic and spintronic applications.
一维(1D)铁电性和铁磁性的存在为拓展低维磁电和多铁性研究领域以及探索高性能纳米器件的未来发展提供了契机。在此,我们预测了一种具有共存铁磁性的新型一维铁电六方-GeS纳米线。电极化源于Ge和S原子之间的原子位移,并且它表现出远高于室温的铁电居里温度Ec = 830 K。源于斯托纳不稳定性的铁磁性可通过空穴掺杂进行调控,并在很宽的空穴浓度范围内得以保持。此外,通过应变工程可实现间接-直接-间接带隙跃迁,且近带边电子轨道的键合性质揭示了这种跃迁机制。这些结果为研究一维铁电和铁磁系统提供了一个平台,并且所展示的六方-GeS纳米线展现出了在高性能电子和自旋电子应用方面的潜力。