Levin Michael, Pezzulo Giovanni, Finkelstein Joshua M
Biology Department, Tufts University, Medford, Massachusetts 02155-4243; email:
Allen Discovery Center, Tufts University, Medford, Massachusetts 02155; email:
Annu Rev Biomed Eng. 2017 Jun 21;19:353-387. doi: 10.1146/annurev-bioeng-071114-040647.
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
生命系统展现出非凡的自我组装、再生和重塑复杂形状的能力。细胞网络如何构建和修复特定的解剖结构仍是生物工程下一代科学核心的一个悬而未决的问题。发育生物电是一门令人兴奋的新兴学科,它利用多种细胞类型之间的内源性生物电信号来调节模式形成。我们简要概述了该领域,回顾了近期在一系列模型系统中利用生物电控制模式形成的数据,并描述了用于探究生物电在复杂解剖结构动态控制中作用的分子工具。我们认为,最近为从大脑中的离子活动推断语义内容和信息处理而开发的定量策略,可能为破解生物电密码提供重要线索。掌握体内大规模形状调控机制将推动生物工程、再生医学和合成形态学的变革性进展,并可用于治疗出生缺陷、创伤性损伤和癌症。