Suppr超能文献

反馈、运动想象和奖励如何利用功能磁共振成像实时影响大脑的自我调节。

How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI.

作者信息

Sepulveda Pradyumna, Sitaram Ranganatha, Rana Mohit, Montalba Cristian, Tejos Cristian, Ruiz Sergio

机构信息

Biomedical Imaging Center, Pontificia Universidad Católica De Chile, Santiago, Chile.

Department of Electrical Engineering, Pontificia Universidad Católica De Chile, Santiago, Chile.

出版信息

Hum Brain Mapp. 2016 Sep;37(9):3153-71. doi: 10.1002/hbm.23228. Epub 2016 Jun 6.

Abstract

The learning process involved in achieving brain self-regulation is presumed to be related to several factors, such as type of feedback, reward, mental imagery, duration of training, among others. Explicitly instructing participants to use mental imagery and monetary reward are common practices in real-time fMRI (rtfMRI) neurofeedback (NF), under the assumption that they will enhance and accelerate the learning process. However, it is still not clear what the optimal strategy is for improving volitional control. We investigated the differential effect of feedback, explicit instructions and monetary reward while training healthy individuals to up-regulate the blood-oxygen-level dependent (BOLD) signal in the supplementary motor area (SMA). Four groups were trained in a two-day rtfMRI-NF protocol: GF with NF only, GF,I with NF + explicit instructions (motor imagery), GF,R with NF + monetary reward, and GF,I,R with NF + explicit instructions (motor imagery) + monetary reward. Our results showed that GF increased significantly their BOLD self-regulation from day-1 to day-2 and GF,R showed the highest BOLD signal amplitude in SMA during the training. The two groups who were instructed to use motor imagery did not show a significant learning effect over the 2 days. The additional factors, namely motor imagery and reward, tended to increase the intersubject variability in the SMA during the course of training. Whole brain univariate and functional connectivity analyses showed common as well as distinct patterns in the four groups, representing the varied influences of feedback, reward, and instructions on the brain. Hum Brain Mapp 37:3153-3171, 2016. © 2016 Wiley Periodicals, Inc.

摘要

实现大脑自我调节所涉及的学习过程被认为与几个因素有关,如反馈类型、奖励、心理意象、训练持续时间等。明确指示参与者使用心理意象和金钱奖励是实时功能磁共振成像(rtfMRI)神经反馈(NF)中的常见做法,其假设是这些因素将增强并加速学习过程。然而,目前仍不清楚改善意志控制的最佳策略是什么。我们在训练健康个体上调辅助运动区(SMA)的血氧水平依赖(BOLD)信号时,研究了反馈、明确指示和金钱奖励的不同作用。四组被试按照为期两天的rtfMRI-NF方案进行训练:仅接受NF的GF组、接受NF+明确指示(运动意象)的GF,I组、接受NF+金钱奖励的GF,R组,以及接受NF+明确指示(运动意象)+金钱奖励的GF,I,R组。我们的结果显示,GF组从第1天到第2天其BOLD自我调节能力显著增强,并且GF,R组在训练期间SMA中的BOLD信号幅度最高。接受运动意象指示的两组在两天内未显示出显著的学习效果。额外的因素,即运动意象和奖励,在训练过程中往往会增加SMA中个体间的变异性。全脑单变量和功能连接分析显示了四组中共同以及不同的模式,代表了反馈、奖励和指示对大脑的不同影响。《人类大脑图谱》37:3153 - 3171, 2016。© 2016威利期刊公司。

相似文献

1
How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI.
Hum Brain Mapp. 2016 Sep;37(9):3153-71. doi: 10.1002/hbm.23228. Epub 2016 Jun 6.
2
Self-regulation of the anterior insula: Reinforcement learning using real-time fMRI neurofeedback.
Neuroimage. 2014 Mar;88:113-24. doi: 10.1016/j.neuroimage.2013.10.069. Epub 2013 Nov 11.
6
Upregulation of Supplementary Motor Area Activation with fMRI Neurofeedback during Motor Imagery.
eNeuro. 2021 Jan 22;8(1). doi: 10.1523/ENEURO.0377-18.2020. Print 2021 Jan-Feb.
8
Effects of Motor Imagery and Visual Neurofeedback on Activation in the Swallowing Network: A Real-Time fMRI Study.
Dysphagia. 2019 Dec;34(6):879-895. doi: 10.1007/s00455-019-09985-w. Epub 2019 Feb 15.
9
Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.
Neuroscience. 2018 May 15;378:22-33. doi: 10.1016/j.neuroscience.2016.04.034. Epub 2016 Apr 29.

引用本文的文献

4
Online self-evaluation of fMRI-based neurofeedback performance.
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230089. doi: 10.1098/rstb.2023.0089. Epub 2024 Oct 21.
5
Mechanisms of brain self-regulation: psychological factors, mechanistic models and neural substrates.
Philos Trans R Soc Lond B Biol Sci. 2024 Dec 2;379(1915):20230093. doi: 10.1098/rstb.2023.0093. Epub 2024 Oct 21.
7
Exploring protocol development: Implementing systematic contextual memory to enhance real-time fMRI neurofeedback.
J Electr Bioimpedance. 2024 May 31;15(1):41-62. doi: 10.2478/joeb-2024-0006. eCollection 2024 Jan.
8
Interpersonal neural synchrony and mental disorders: unlocking potential pathways for clinical interventions.
Front Neurosci. 2024 Mar 11;18:1286130. doi: 10.3389/fnins.2024.1286130. eCollection 2024.
9
Simulated operant reflex conditioning environment reveals effects of feedback parameters.
PLoS One. 2024 Mar 21;19(3):e0300338. doi: 10.1371/journal.pone.0300338. eCollection 2024.
10
A feasibility study of goal-directed network-based real-time fMRI neurofeedback for anhedonic depression.
Front Psychiatry. 2023 Dec 5;14:1253727. doi: 10.3389/fpsyt.2023.1253727. eCollection 2023.

本文引用的文献

1
A subject-independent pattern-based Brain-Computer Interface.
Front Behav Neurosci. 2015 Oct 20;9:269. doi: 10.3389/fnbeh.2015.00269. eCollection 2015.
3
Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated?
Neuroimage. 2016 Jan 1;124(Pt A):806-812. doi: 10.1016/j.neuroimage.2015.09.042. Epub 2015 Sep 28.
4
5
fMRI neurofeedback facilitates anxiety regulation in females with spider phobia.
Front Behav Neurosci. 2015 Jun 8;9:148. doi: 10.3389/fnbeh.2015.00148. eCollection 2015.
6
Dissociating Parieto-Frontal Networks for Phonological and Semantic Word Decisions: A Condition-and-Perturb TMS Study.
Cereb Cortex. 2016 Jun;26(6):2590-2601. doi: 10.1093/cercor/bhv092. Epub 2015 May 7.
8
Manipulating motor performance and memory through real-time fMRI neurofeedback.
Biol Psychol. 2015 May;108:85-97. doi: 10.1016/j.biopsycho.2015.03.009. Epub 2015 Mar 18.
9
Reward-dependent modulation of movement variability.
J Neurosci. 2015 Mar 4;35(9):4015-24. doi: 10.1523/JNEUROSCI.3244-14.2015.
10
fNIRS-based brain-computer interfaces: a review.
Front Hum Neurosci. 2015 Jan 28;9:3. doi: 10.3389/fnhum.2015.00003. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验