Suppr超能文献

利用血管信息对肺部纵向CT图像进行生物力学可变形图像配准

Biomechanical deformable image registration of longitudinal lung CT images using vessel information.

作者信息

Cazoulat Guillaume, Owen Dawn, Matuszak Martha M, Balter James M, Brock Kristy K

机构信息

Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Phys Med Biol. 2016 Jul 7;61(13):4826-39. doi: 10.1088/0031-9155/61/13/4826. Epub 2016 Jun 8.

Abstract

Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix's eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: [Formula: see text], [Formula: see text] and [Formula: see text] mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable future plan adaptation strategies.

摘要

随着患者对治疗产生反应,肺部组织在纵向图像上的空间相关性是自适应放射治疗中的关键步骤。这项工作的目标是扩展基于生物力学模型的可变形配准算法(Morfeus),以在存在显著解剖变化的情况下实现精确配准。对6名先前接受常规分割放疗的肺癌患者进行了回顾性评估。在治疗计划时以及治疗三周后获取呼气CT扫描图像。对于每位患者,使用基于生物力学模型的可变形配准算法Morfeus将计划CT与随访CT进行配准。为了模拟肺部的复杂反应,对Morfeus进行了扩展:使用Morfeus估计初始变形,该变形包括胸壁上的边界条件并纳入与肺部的滑动界面。据推测,基于血管树匹配添加边界条件将有力地减少残余配准误差。为实现这一点,通过基于 Hessian 矩阵特征值对血管性图像进行阈值处理,在两幅图像上分割血管树。对于参考血管树中心线上的每个点,通过在计划CT和变形后的随访CT之间应用Demons配准算法的变体来估计位移向量。一名专家独立识别出在肺部均匀分布的对应地标,以计算目标配准误差(TRE)。刚性配准、Morfeus以及带有血管树边界条件的Morfeus后的TRE分别为:[公式:见原文]、[公式:见原文]和[公式:见原文]毫米。总之,在血管上添加边界条件显著提高了在放疗过程中对肺部和肿瘤反应建模的准确性。最小化并对这些几何不确定性进行建模将有助于未来的计划调整策略。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验