Suppr超能文献

在商业放射治疗计划系统中验证腹部、胸部和骨盆的生物力学可变形图像配准。

Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system.

机构信息

Techna Institute and Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 2M9, Canada.

RaySearch Laboratories AB, Sveavägen 44, SE-103 65, Stockholm, Sweden.

出版信息

Med Phys. 2017 Jul;44(7):3407-3417. doi: 10.1002/mp.12307. Epub 2017 Jun 1.

Abstract

PURPOSE

The accuracy of deformable image registration tools can vary widely between imaging modalities and specific implementations of the same algorithms. A biomechanical model-based algorithm initially developed in-house at an academic institution was translated into a commercial radiotherapy treatment planning system and validated for multiple imaging modalities and anatomic sites.

METHODS

Biomechanical deformable registration (Morfeus) is a geometry-driven algorithm based on the finite element method. Boundary conditions are derived from the model-based segmentation of controlling structures in each image which establishes a point-to-point surface correspondence. For each controlling structure, material properties and fixed or sliding interfaces are assigned. The displacements of internal volumes for controlling structures and other structures implicitly deformed are solved with finite element analysis. Registration was performed for 74 patients with images (mean vector resolution) of thoracic and abdominal 4DCT (2.8 mm) and MR (5.3 mm), liver CT-MR (4.5 mm), and prostate MR (2.6 mm). Accuracy was quantified between deformed and actual target images using distance-to-agreement (DTA) for structure surfaces and the target registration error (TRE) for internal point landmarks.

RESULTS

The results of the commercial implementation were as follows. The mean DTA was ≤ 1.0 mm for controlling structures and 1.0-3.5 mm for implicitly deformed structures on average. TRE ranged from 2.0 mm on prostate MR to 5.1 mm on lung MR on average, within 0.1 mm or lower than the image voxel sizes. Accuracy was not overly sensitive to changes in the material properties or variability in structure segmentations, as changing these inputs affected DTA and TRE by ≤ 0.8 mm. Maximum DTA > 5 mm occurred for 88% of the structures evaluated although these were within the inherent segmentation uncertainty for 82% of structures. Differences in accuracy between the commercial and in-house research implementations were ≤ 0.5 mm for mean DTA and ≤ 0.7 mm for mean TRE.

CONCLUSIONS

Accuracy of biomechanical deformable registration evaluated on a large cohort of images in the thorax, abdomen and prostate was similar to the image voxel resolution on average across multiple modalities. Validation of this treatment planning system implementation supports biomechanical deformable registration as a versatile clinical tool to enable accurate target delineation at planning and treatment adaptation.

摘要

目的

不同成像方式和相同算法的具体实现之间,形变图像配准工具的准确性差异很大。最初在学术机构内部开发的基于生物力学模型的算法已被转化为商业放射治疗计划系统,并针对多种成像方式和解剖部位进行了验证。

方法

生物力学形变配准(Morfeus)是一种基于有限元方法的几何驱动算法。边界条件由每个图像中基于模型的控制结构分割得出,这建立了点对点的曲面对应关系。对于每个控制结构,都会分配材料属性以及固定或滑动界面。通过有限元分析求解控制结构和其他隐含变形结构的内部体积位移。对 74 例胸部和腹部 4DCT(2.8mm)、MR(5.3mm)、肝 CT-MR(4.5mm)和前列腺 MR(2.6mm)的患者图像进行了配准。使用结构曲面的距离一致度(DTA)和内部点标志的靶区注册误差(TRE)来量化配准后图像与实际靶区图像之间的差异。

结果

商业实现的结果如下。对于控制结构,平均 DTA≤1.0mm,对于隐含变形结构,平均 DTA 为 1.0-3.5mm。TRE 范围从前列腺 MR 的 2.0mm 到肺 MR 的 5.1mm,平均而言,都在 0.1mm 或低于图像体素大小范围内。准确性对材料属性的变化或结构分割的变化不敏感,因为这些输入的变化仅使 DTA 和 TRE 变化≤0.8mm。虽然 82%的结构的 DTA 都在固有分割不确定性范围内,但仍有 88%的结构的最大 DTA>5mm。商业和内部研究实现之间的平均 DTA 差异≤0.5mm,平均 TRE 差异≤0.7mm。

结论

在胸部、腹部和前列腺的大量图像上评估的生物力学形变配准的准确性,平均而言与多种模态的图像体素分辨率相似。这种治疗计划系统实现的验证支持生物力学形变配准作为一种通用的临床工具,可在计划和治疗适应过程中实现准确的靶区勾画。

相似文献

2
Biomechanical deformable image registration of longitudinal lung CT images using vessel information.
Phys Med Biol. 2016 Jul 7;61(13):4826-39. doi: 10.1088/0031-9155/61/13/4826. Epub 2016 Jun 8.
3
Utility and validation of biomechanical deformable image registration in low-contrast images.
Pract Radiat Oncol. 2015 Jul-Aug;5(4):e401-8. doi: 10.1016/j.prro.2015.01.011. Epub 2015 Mar 29.
4
Accuracy of deformable image registration techniques for alignment of longitudinal cholangiocarcinoma CT images.
Med Phys. 2020 Apr;47(4):1670-1679. doi: 10.1002/mp.14029. Epub 2020 Feb 12.
5
A neural network approach for fast, automated quantification of DIR performance.
Med Phys. 2017 Aug;44(8):4126-4138. doi: 10.1002/mp.12321. Epub 2017 Jul 17.
6
Accuracy of finite element model-based multi-organ deformable image registration.
Med Phys. 2005 Jun;32(6):1647-59. doi: 10.1118/1.1915012.

引用本文的文献

1
Multi-contrast 4DMR via MR multitasking: Early clinical experience and implication for liver stereotactic body radiation therapy.
Radiother Oncol. 2025 May;206:110839. doi: 10.1016/j.radonc.2025.110839. Epub 2025 Mar 11.
2
Tools and recommendations for commissioning and quality assurance of deformable image registration in radiotherapy.
Phys Imaging Radiat Oncol. 2024 Sep 14;32:100647. doi: 10.1016/j.phro.2024.100647. eCollection 2024 Oct.
3
Evaluation and mitigation of deformable image registration uncertainties for MRI-guided adaptive radiotherapy.
J Appl Clin Med Phys. 2024 Jun;25(6):e14358. doi: 10.1002/acm2.14358. Epub 2024 Apr 18.
7
Review and recommendations on deformable image registration uncertainties for radiotherapy applications.
Phys Med Biol. 2023 Dec 13;68(24):24TR01. doi: 10.1088/1361-6560/ad0d8a.
10
Ablative Margins of Colorectal Liver Metastases Using Deformable CT Image Registration and Autosegmentation.
Radiology. 2023 Apr;307(2):e221373. doi: 10.1148/radiol.221373. Epub 2023 Jan 31.

本文引用的文献

2
Dosimetric feasibility of ablative dose escalated focal monotherapy with MRI-guided high-dose-rate (HDR) brachytherapy for prostate cancer.
Radiother Oncol. 2017 Jan;122(1):103-108. doi: 10.1016/j.radonc.2016.11.011. Epub 2016 Dec 1.
3
Accumulated Delivered Dose Response of Stereotactic Body Radiation Therapy for Liver Metastases.
Int J Radiat Oncol Biol Phys. 2015 Nov 1;93(3):639-48. doi: 10.1016/j.ijrobp.2015.07.2273. Epub 2015 Jul 26.
4
A hybrid biomechanical intensity based deformable image registration of lung 4DCT.
Phys Med Biol. 2015 Apr 21;60(8):3359-73. doi: 10.1088/0031-9155/60/8/3359. Epub 2015 Apr 1.
5
Utility and validation of biomechanical deformable image registration in low-contrast images.
Pract Radiat Oncol. 2015 Jul-Aug;5(4):e401-8. doi: 10.1016/j.prro.2015.01.011. Epub 2015 Mar 29.
6
The ANACONDA algorithm for deformable image registration in radiotherapy.
Med Phys. 2015 Jan;42(1):40-53. doi: 10.1118/1.4894702.
8
On the need for comprehensive validation of deformable image registration, investigated with a novel 3-dimensional deformable dosimeter.
Int J Radiat Oncol Biol Phys. 2013 Oct 1;87(2):414-21. doi: 10.1016/j.ijrobp.2013.05.045. Epub 2013 Jul 23.
9
A finite element method to correct deformable image registration errors in low-contrast regions.
Phys Med Biol. 2012 Jun 7;57(11):3499-515. doi: 10.1088/0031-9155/57/11/3499. Epub 2012 May 11.
10
A novel technique to enable experimental validation of deformable dose accumulation.
Med Phys. 2012 Feb;39(2):765-76. doi: 10.1118/1.3676185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验