Vilar Santiago, Hripcsak George
Brief Bioinform. 2017 Jul 1;18(4):670-681. doi: 10.1093/bib/bbw048.
Explosion of the availability of big data sources along with the development in computational methods provides a useful framework to study drugs' actions, such as interactions with pharmacological targets and off-targets. Databases related to protein interactions, adverse effects and genomic profiles are available to be used for the construction of computational models. In this article, we focus on the description of biological profiles for drugs that can be used as a system to compare similarity and create methods to predict and analyze drugs' actions. We highlight profiles constructed with different biological data, such as target-protein interactions, gene expression measurements, adverse effects and disease profiles. We focus on the discovery of new targets or pathways for drugs already in the pharmaceutical market, also called drug repurposing, in the interaction with off-targets responsible for adverse reactions and in drug-drug interaction analysis. The current and future applications, strengths and challenges facing all these methods are also discussed. Biological profiles or signatures are an important source of data generation to deeply analyze biological actions with important implications in drug-related studies.
随着大数据源可用性的激增以及计算方法的发展,为研究药物作用提供了一个有用的框架,例如药物与药理学靶点及脱靶的相互作用。与蛋白质相互作用、不良反应和基因组图谱相关的数据库可用于构建计算模型。在本文中,我们重点描述可作为一种系统用于比较相似性以及创建预测和分析药物作用方法的药物生物学图谱。我们着重介绍利用不同生物学数据构建的图谱,如靶点 - 蛋白质相互作用、基因表达测量、不良反应和疾病图谱。我们聚焦于在制药市场中已有的药物发现新靶点或新途径,即药物再利用,研究其与导致不良反应的脱靶的相互作用以及药物 - 药物相互作用分析。还讨论了所有这些方法当前和未来的应用、优势及面临的挑战。生物学图谱或特征是数据生成的重要来源,可用于深入分析生物学作用,这在药物相关研究中具有重要意义。