Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, United States.
Curr Med Chem. 2020;27(35):5856-5886. doi: 10.2174/0929867326666190808154841.
Therapeutic activity of a significant majority of drugs is determined by their interactions with proteins. Databases of drug-protein interactions (DPIs) primarily focus on the therapeutic protein targets while the knowledge of the off-targets is fragmented and partial. One way to bridge this knowledge gap is to employ computational methods to predict protein targets for a given drug molecule, or interacting drugs for given protein targets. We survey a comprehensive set of 35 methods that were published in high-impact venues and that predict DPIs based on similarity between drugs and similarity between protein targets. We analyze the internal databases of known PDIs that these methods utilize to compute similarities, and investigate how they are linked to the 12 publicly available source databases. We discuss contents, impact and relationships between these internal and source databases, and well as the timeline of their releases and publications. The 35 predictors exploit and often combine three types of similarities that consider drug structures, drug profiles, and target sequences. We review the predictive architectures of these methods, their impact, and we explain how their internal DPIs databases are linked to the source databases. We also include a detailed timeline of the development of these predictors and discuss the underlying limitations of the current resources and predictive tools. Finally, we provide several recommendations concerning the future development of the related databases and methods.
大多数药物的治疗活性是由它们与蛋白质的相互作用决定的。药物-蛋白质相互作用(DPIs)数据库主要集中在治疗性蛋白质靶标上,而关于非靶标的知识则是零散和局部的。填补这一知识空白的一种方法是利用计算方法预测给定药物分子的蛋白质靶标,或给定蛋白质靶标的相互作用药物。我们调查了一套全面的 35 种方法,这些方法发表在高影响力的场所,基于药物之间的相似性和蛋白质靶标之间的相似性来预测 DPIs。我们分析了这些方法用于计算相似性的已知 PDIs 的内部数据库,并研究了它们与 12 个公开可用的源数据库的联系。我们讨论了这些内部和源数据库的内容、影响和关系,以及它们的发布和出版时间表。这 35 个预测因子利用并经常结合考虑药物结构、药物特征和目标序列的三种相似性类型。我们回顾了这些方法的预测架构、它们的影响,并解释了它们的内部 DPIs 数据库与源数据库的联系。我们还包括这些预测因子的详细发展时间表,并讨论了当前资源和预测工具的潜在局限性。最后,我们就相关数据库和方法的未来发展提出了几点建议。