Barile Christopher J, Tse Edmund C M, Li Ying, Gewargis John P, Kirchschlager Nicholas A, Zimmerman Steven C, Gewirth Andrew A
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.
Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois; International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan.
Biophys J. 2016 Jun 7;110(11):2451-2462. doi: 10.1016/j.bpj.2016.04.041.
In this study, we examine the mechanism of flip-flop diffusion of proton carriers across the lipid layer of a hybrid bilayer membrane (HBM). The HBM consists of a lipid monolayer appended on top of a self-assembled monolayer containing a Cu-based O2 reduction catalyst on a Au electrode. The flip-flop diffusion rates of the proton carriers dictate the kinetics of O2 reduction by the electrocatalyst. By varying both the tail lengths of the proton carriers and the lipids, we find the combinations of lengths that maximize the flip-flop diffusion rate. These experimental results combined with biophysical modeling studies allow us to propose a detailed mechanism for transmembrane flip-flop diffusion in HBM systems, which involves the bending of the alkyl tail of the proton carrier as the rate-determining step. Additional studies with an unbendable proton carrier further validate these mechanistic findings.
在本研究中,我们研究了质子载体在混合双层膜(HBM)脂质层中翻转扩散的机制。HBM由附着在自组装单层膜顶部的脂质单层组成,该自组装单层膜在金电极上含有基于铜的氧还原催化剂。质子载体的翻转扩散速率决定了电催化剂还原氧的动力学。通过改变质子载体和脂质的尾部长度,我们找到了使翻转扩散速率最大化的长度组合。这些实验结果与生物物理建模研究相结合,使我们能够提出HBM系统中跨膜翻转扩散的详细机制,其中质子载体烷基尾部的弯曲是速率决定步骤。对不可弯曲质子载体的进一步研究进一步验证了这些机理研究结果。