Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
Phys Chem Chem Phys. 2019 Oct 9;21(39):22140-22148. doi: 10.1039/c9cp04689e.
van der Waals heterostructures (vdWHs), obtained by vertically stacking different two-dimensional (2D) layered materials are being considered intensively as potential materials for nanoelectronic and optoelectronic devices because they can show the most potential advantages of individual 2D materials. Here, we construct the SnSe2/MoS2 vdWH and investigate its electronic and optical properties using first-principles calculations. We find that the band structures of both MoS2 and SnSe2 monolayers are well kept in the SnSe2/MoS2 vdWH because of their weakly interacting features via vdW interaction. The SnSe2/MoS2 vdWH forms a type-I band alignment and exhibits an indirect semiconductor band gap of 0.45 eV. The type-I band alignment makes the SnSe2/MoS2 vdWH a promising material for optoelectronic nanodevices, such as light emitting diodes because of ultra-fast recombination of electrons and holes. Moreover, the band gap and band alignment of the SnSe2/MoS2 vdWH can be tailored by the electric field and the insertion of a graphene sheet. After applying an electric field, type-I to type-II and semiconductor to metal transitions can be achieved in the SnSe2/MoS2 vdWH. Besides, when a graphene sheet is inserted into the SnSe2/MoS2 vdWH to form three stacking types of G/SnSe2/MoS2, SnSe2/G/MoS2 and SnSe2/MoS2/G, the p-type semiconductor of the SnSe2/MoS2 vdWH is converted to an n-type Ohmic contact. These findings provide theoretical guidance for designing future nanoelectronic and optoelectronic devices based on the SnSe2/MoS2 vdWH.
范德华异质结(vdWHs)是通过垂直堆叠不同的二维(2D)层状材料获得的,被认为是纳米电子和光电子器件的潜在材料,因为它们可以展示出单个 2D 材料最具潜力的优势。在这里,我们构建了 SnSe2/MoS2 vdWH,并使用第一性原理计算研究了它的电子和光学性质。我们发现,由于通过范德华相互作用的弱相互作用特征,MoS2 和 SnSe2 单层的能带结构在 SnSe2/MoS2 vdWH 中都得到了很好的保持。SnSe2/MoS2 vdWH 形成了一种 I 型能带排列,并表现出 0.45eV 的间接半导体带隙。I 型能带排列使得 SnSe2/MoS2 vdWH 成为光电器件的有前途的材料,例如发光二极管,因为电子和空穴的超快复合。此外,SnSe2/MoS2 vdWH 的带隙和能带排列可以通过电场和插入石墨烯片来调整。施加电场后,SnSe2/MoS2 vdWH 可以实现从 I 型到 II 型和半导体到金属的转变。此外,当将石墨烯片插入 SnSe2/MoS2 vdWH 中以形成三种堆叠类型的 G/SnSe2/MoS2、SnSe2/G/MoS2 和 SnSe2/MoS2/G 时,SnSe2/MoS2 vdWH 的 p 型半导体被转换为 n 型欧姆接触。这些发现为基于 SnSe2/MoS2 vdWH 的未来纳米电子和光电子器件的设计提供了理论指导。