Graduate Program in Applied Physics, ‡Department of Materials Science and Engineering, §Department of Physics, ∥Department of Chemistry, and ⊥Department of Medicine, Northwestern University , Evanston, Illinois 60208, United States.
ACS Nano. 2016 Jan 26;10(1):1067-75. doi: 10.1021/acsnano.5b06398. Epub 2015 Nov 23.
Atomically thin MoS2/graphene heterostructures are promising candidates for nanoelectronic and optoelectronic technologies. Among different graphene substrates, epitaxial graphene (EG) on SiC provides several potential advantages for such heterostructures, including high electronic quality, tunable substrate coupling, wafer-scale processability, and crystalline ordering that can template commensurate growth. Exploiting these attributes, we demonstrate here the thickness-controlled van der Waals epitaxial growth of MoS2 on EG via chemical vapor deposition, giving rise to transfer-free synthesis of a two-dimensional heterostructure with registry between its constituent materials. The rotational commensurability observed between the MoS2 and EG is driven by the energetically favorable alignment of their respective lattices and results in nearly strain-free MoS2, as evidenced by synchrotron X-ray scattering and atomic-resolution scanning tunneling microscopy (STM). The electronic nature of the MoS2/EG heterostructure is elucidated with STM and scanning tunneling spectroscopy, which reveals bias-dependent apparent thickness, band bending, and a reduced band gap of ∼0.4 eV at the monolayer MoS2 edges.
原子级薄的 MoS2/石墨烯异质结构是纳米电子学和光电子学技术有前途的候选材料。在不同的石墨烯衬底中,SiC 上的外延石墨烯 (EG) 为这种异质结构提供了几个潜在的优势,包括高电子质量、可调谐的衬底耦合、晶圆级可加工性以及可以模板化共格生长的晶体有序性。利用这些属性,我们在这里通过化学气相沉积展示了 MoS2 在 EG 上的厚度可控范德瓦尔斯外延生长,从而实现了无转移的二维异质结构的合成,其组成材料之间具有对位关系。MoS2 和 EG 之间观察到的旋转共容性是由它们各自晶格的能量有利对准驱动的,这导致了几乎无应变的 MoS2,这一点可以通过同步加速器 X 射线散射和原子分辨率扫描隧道显微镜 (STM) 得到证明。通过 STM 和扫描隧道谱研究了 MoS2/EG 异质结构的电子性质,揭示了在偏压依赖性下的表观厚度、能带弯曲和单层 MoS2 边缘的约 0.4 eV 减小的带隙。