Suppr超能文献

耐旱和易旱花生响应水分胁迫的叶片蛋白质组比较分析

Comparative leaf proteomics of drought-tolerant and -susceptible peanut in response to water stress.

作者信息

Katam Ramesh, Sakata Katsumi, Suravajhala Prashanth, Pechan Tibor, Kambiranda Devaiah M, Naik Karamthot Sivasankar, Guo Baozhu, Basha Sheikh M

机构信息

Department of Biological Sciences, Florida A&M University, Tallahassee, FL 32307, USA.

Department of Life Science and Informatics, Maebashi Institute of Technology, 460-1 Kamisadori, Maebashi, Gunma 371-0816, Japan.

出版信息

J Proteomics. 2016 Jun 30;143:209-226. doi: 10.1016/j.jprot.2016.05.031. Epub 2016 Jun 6.

Abstract

UNLABELLED

Water stress (WS) predisposes peanut plants to fungal infection resulting in pre-harvest aflatoxin contamination. Major changes during water stress including oxidative stress, lead to destruction of photosynthetic apparatus and other macromolecules within cells. Two peanut cultivars with diverse drought tolerance characteristics were subjected to WS, and their leaf proteome was compared using two-dimensional electrophoresis complemented with MALDI-TOF/TOF mass spectrometry. Ninety-six protein spots were differentially abundant to water stress in both cultivars that corresponded to 60 non-redundant proteins. Protein interaction prediction analysis suggests that 42 unique proteins showed interactions in tolerant cultivar while 20 showed interactions in the susceptible cultivar, activating other proteins in directed system response networks. Four proteins: glutamine ammonia ligase, chitin class II, actin isoform B, and beta tubulin, involved in metabolism, defense and cellular biogenesis, are unique in tolerant cultivar and showed positive interactions with other proteins. In addition, four proteins: serine/threonine protein phosphate PP1, choline monooxygenase, peroxidase 43, and SNF1-related protein kinase regulatory subunit beta-2, that play a role as cryoprotectants through signal transduction, were induced in drought tolerant cultivar following WS. Eleven interologs of these proteins were found in Arabidopsis interacting with several proteins and it is believed that similar mechanisms/pathways exist in peanut.

SIGNIFICANCE

Peanuts (Arachis hypogaea L.) are a major source of plant protein grown in subtropical and tropical regions of the world. Pre-harvest aflatoxin contamination is a major problem that affects peanut crop yield and food safety. Poor understanding of molecular and cellular mechanisms associated with aflatoxin resistance is largely responsible for the lack of progress in elucidating a process/methodology for reducing aflatoxin contamination in peanuts. Drought perturbs the invasion of the aflatoxin producing fungus and thus affects the quality and yield of peanut. Therefore, more studies involving the effects of drought stress to determine the molecular changes will enhance our understanding of the key metabolic pathways involved in the combined stresses. The changes associated with the biotic and abiotic interactions within the peanut will be used to determine the metabolic pathways involved in the stress tolerance. This research would be beneficial in identifying the tolerant molecular signatures and promoting food safety and consumer health through breeding superior quality peanut cultivars.

摘要

未标记

水分胁迫(WS)使花生植株易受真菌感染,导致收获前黄曲霉毒素污染。水分胁迫期间的主要变化包括氧化应激,会导致光合机构和细胞内其他大分子遭到破坏。对具有不同耐旱特性的两个花生品种施加水分胁迫,并使用二维电泳结合基质辅助激光解吸电离飞行时间串联质谱(MALDI-TOF/TOF)对其叶片蛋白质组进行比较。在两个品种中,有96个蛋白质点在水分胁迫下丰度存在差异,对应60种非冗余蛋白质。蛋白质相互作用预测分析表明,42种独特蛋白质在耐旱品种中表现出相互作用,而20种在感病品种中表现出相互作用,在定向系统响应网络中激活其他蛋白质。四种蛋白质:谷氨酰胺合成酶、几丁质II类、肌动蛋白异构体B和β微管蛋白,参与代谢、防御和细胞生物发生,在耐旱品种中是独特的,并与其他蛋白质表现出正相互作用。此外,四种蛋白质:丝氨酸/苏氨酸蛋白磷酸酶PP1、胆碱单加氧酶、过氧化物酶43和SNF1相关蛋白激酶调节亚基β-2,通过信号转导起到冷冻保护剂的作用,在水分胁迫后的耐旱品种中被诱导产生。在拟南芥中发现了这些蛋白质的11个同源物与几种蛋白质相互作用,据信花生中存在类似的机制/途径。

意义

花生(Arachis hypogaea L.)是世界亚热带和热带地区种植的植物蛋白的主要来源。收获前黄曲霉毒素污染是影响花生产量和食品安全的主要问题。对与黄曲霉毒素抗性相关的分子和细胞机制了解不足很大程度上导致在阐明减少花生中黄曲霉毒素污染的过程/方法方面缺乏进展。干旱扰乱产黄曲霉毒素真菌的入侵,从而影响花生的品质和产量。因此,更多涉及干旱胁迫影响以确定分子变化的研究将增进我们对复合胁迫中关键代谢途径的理解。与花生内生物和非生物相互作用相关的变化将用于确定参与胁迫耐受性的代谢途径。这项研究将有助于识别耐受性分子特征,并通过培育优质花生品种促进食品安全和消费者健康。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验