Suppr超能文献

11C-雷氯必利高分辨率PET研究中纹状体下部分分割的手动与自动技术比较

Comparison of manual and automatic techniques for substriatal segmentation in 11C-raclopride high-resolution PET studies.

作者信息

Johansson Jarkko, Alakurtti Kati, Joutsa Juho, Tohka Jussi, Ruotsalainen Ulla, Rinne Juha O

机构信息

aTurku PET Centre bDepartment of Diagnostic Radiology cDivision of Clinical Neurosciences, Turku University Central Hospital dTurku PET Centre, University of Turku, Turku eDepartment of Signal Processing, Tampere University of Technology fBioMediTech, Tampere, Finland gDepartment of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Leganes hInstituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain.

出版信息

Nucl Med Commun. 2016 Oct;37(10):1074-87. doi: 10.1097/MNM.0000000000000559.

Abstract

BACKGROUND

The striatum is the primary target in regional C-raclopride-PET studies, and despite its small volume, it contains several functional and anatomical subregions. The outcome of the quantitative dopamine receptor study using C-raclopride-PET depends heavily on the quality of the region-of-interest (ROI) definition of these subregions. The aim of this study was to evaluate subregional analysis techniques because new approaches have emerged, but have not yet been compared directly.

MATERIALS AND METHODS

In this paper, we compared manual ROI delineation with several automatic methods. The automatic methods used either direct clustering of the PET image or individualization of chosen brain atlases on the basis of MRI or PET image normalization. State-of-the-art normalization methods and atlases were applied, including those provided in the FreeSurfer, Statistical Parametric Mapping8, and FSL software packages. Evaluation of the automatic methods was based on voxel-wise congruity with the manual delineations and the test-retest variability and reliability of the outcome measures using data from seven healthy male participants who were scanned twice with C-raclopride-PET on the same day.

RESULTS

The results show that both manual and automatic methods can be used to define striatal subregions. Although most of the methods performed well with respect to the test-retest variability and reliability of binding potential, the smallest average test-retest variability and SEM were obtained using a connectivity-based atlas and PET normalization (test-retest variability=4.5%, SEM=0.17).

CONCLUSION

The current state-of-the-art automatic ROI methods can be considered good alternatives for subjective and laborious manual segmentation in C-raclopride-PET studies.

摘要

背景

在区域C-雷氯必利正电子发射断层扫描(PET)研究中,纹状体是主要靶点,尽管其体积小,但包含多个功能和解剖亚区域。使用C-雷氯必利PET进行的定量多巴胺受体研究结果在很大程度上取决于这些亚区域的感兴趣区(ROI)定义质量。本研究的目的是评估亚区域分析技术,因为已经出现了新方法,但尚未直接比较。

材料与方法

在本文中,我们将手动ROI描绘与几种自动方法进行了比较。自动方法要么对PET图像进行直接聚类,要么基于MRI或PET图像归一化对选定的脑图谱进行个体化。应用了最先进的归一化方法和图谱,包括FreeSurfer、统计参数映射8和FSL软件包中提供的那些。对自动方法的评估基于与手动描绘的体素一致性以及使用来自7名健康男性参与者的数据的重测变异性和结果测量的可靠性,这些参与者在同一天用C-雷氯必利PET进行了两次扫描。

结果

结果表明,手动和自动方法均可用于定义纹状体亚区域。尽管大多数方法在结合潜力的重测变异性和可靠性方面表现良好,但使用基于连通性的图谱和PET归一化获得的平均重测变异性和标准误最小(重测变异性 = 4.5%,标准误 = 0.17)。

结论

在C-雷氯必利PET研究中,当前最先进的自动ROI方法可被视为主观且费力的手动分割的良好替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验